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ABSTRACT

An analysis of the coverage pattern of transmitting equipment

in the interference region requires a solution to the geometrical ray

configuration which is valid within the effective line-of-sight of the

transmitter. The limiting parameter on the accuracy required in the

analysis is quite high for relatively short wave lengths of transmitted

signal. The effects of the atmosphere and physical irregularities will

be shown to modify an assumed geometric configuration. In addition,

the results of the analysis will be shown solvable on a digital computer.

The techniques of the solution will be indicated.
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CHAPTER I

INTRODUCTION

An analysis covering the area of pattern propagation will deal with the area of

coverage of an airborne platform housing electronic equipment which transmits and

receives electromagnetic waves of various types of modulation. The object of this paper

will not be to analyze the airborne equipment itself, but rather to deal with the pattern

of, or area of coverage of, the equipment in the earth's atmosphere, given the trans-

mitting and receiving field strength functions of the platform. In other words, the

properties of the airborne antenna will be an independent variable in determining the

electromagnetic field strength at a given point in space relative to the airborne system.

In general, the area to be covered will be an analysis of electromagnetic wave propagation

from the time it leaves the airborne platform, until it reaches its target, and in the case

of a radar system, returns to the platform again. Or for example, in the case of a

radar platform located at x , y above a reference to the earth, at what coordinates will

a target be in the detection range of the radar?

This paper will consider two methods by which energy can reach a target from a

transmitting platform and in general return again. One method is by direct line-of-sight

from the platform to the target. The second is by considering a path which reflects from

the surface of the earth. With both paths of transmission present at the same time,

there will certainly be phase cancellation and reinforcement of the transmitted energy at

the target. This fact alone means that if this effect is going to be taken into account,

then a precise geometrical analysis is required if phase considerations are to be pre-

served and meaningful. However, the validity of the geometrical representation must

be analyzed in order to adhere to the physical. For when the energy is of a wave length

in the vicinity of one meter, then if the geometrical situation described above is not

presented accurately by precise equations, the end result becomes entirely invalid. To
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this end, much time and effort will be extended. Typical properties which must be taken

into account are:

(a) Divergence of energy from a spherical reflector.

(b) Effect of the radius of the earth.

(c) Atmospheric variations in the area involved.

(d) The effect of polarization on reflection.

Other properties which will be analyzed are:

(a) Reflector irregularities.

(b) Ray tracing validity.

The author will perform an analysis of the above in relation to field strength versus

spacial position from the platform by compiling equations which represent the factors

involved. While this may appear as a mere task on the surface, if one looks further into

the problem, he soon finds himself with a set of equations which become extremely cum-

bersome to solve without making simplifications which in turn render the results invalid

insofar as phase considerations are concerned. Hence, the author's approach in de-

riving valid equations which are solvable, within the accuracy required, on a digital

computer such as the IBM 7090 will be covered in the paper. The equations finally used

will be discussed, as well as other possible approaches which were rejected for one

reason or another. Of considerable practical interest will be the resulting general com-

puter program to solve the composite equations.
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CHAPTER II

FUNDAMENTAL CONCEPTS OF PROPAGATION

An analysis of any airborne equipment will usually involve the properties which

will be discussed in the pages that follow. Consider first the transmission of electro-

magnetic energy in a theoretical free space. This would consist of transmission in a

vacuum medium between objects ) remote from other influences that transmission is

essentially unaffected.

A. Generalized Philosophy

In general, first to be considered is the isolated radiating antenna itself. Consider

a polar axis of a spherical coordinate system such that its origin is the origin of the

antenna. A point in space relative to the antenna is then characterized by specifying

angles 0 and 0 with respect to the antenna. 0 may be the zenith angle and 0 the angle

about the polar axis.

An antenna has radiating properties which are thus specified in terms of 0 and (P

F(6, 0) may then be defined as the ratio of electric or magnetic field strength in the

(0, 0) direction to that which occurs in the direction of maximum field strength. Meas-

urements are taken at a distance which is large compared to both the wave length and

dimension of the antenna such that the near field of the antenna is neglected and the

energy transmitted consists of constant phase wave fronts.

Considering radiation from the antenna, Poynting's vector (P = E x H), or the

cross product of the electric and magnetic field, gives the magnitude of the energy flow

per unit area in the direction of propagation when its magnitude is averaged over time.

For the steady state sinusoidal consideration this average power can be expressed in

complex notation as:

P -Re(E x H*) (1)
av 2
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The above notation assumes that the incremental section of the radiation can be con-

sidered as a plane wave front, which is true in the far field of the antenna. Utilizing

MKS units, the instantaneous value of Poynting's vector is given as:

E2- E_ = no 2

- 71H (2)770  0

where E and H are the instantaneous values of the total electric and magnetic field

strength and:

70 A/4- a 1207r Ohms impedance of free space (3)
0

P0 = 4r x 10- 7 henrys/meter (4)

- farads/meter (5)0 367r

I0 is called the permeability and E the permittivity. The time average of Poynting's

vector hence degenerates to:

- E2

p E(6)
av 2 0

as:

F p) E(0, (7)

a (0. ) F(, ) 12 iav(0) (8)

where P is the average power in the direction of maximum transmission.av(0)

At this point, it is useful to define an isotropic radiator as an antenna which radiates

equally in all directions, hence for all values of 0 and 0:

F(O, P) = 1.0 (9)

For an isotropic radiator, Poynting's vector is given by the well-known relationship:

W.
iso 4 7rR 2 (10)
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where W is the average power radiated by the isotropic element in watts and R Is the

distance in question.

The power radiated by a directional antenna can be obtained from Equation (8).

Denote this power as W2 . The power in question is found as the surface integral of

Equation (8) or more specifically as:

W2 = Y i a v ( 0 )R2  (11)
4r

where the surface in question is a sphere of radius R from the radiating el,.meiit with

surface area R2 d where a is the solid angle in steradians as viewed f"'-m the

antenna.

With the above in mind, the absolute antenna gain can be defined and obtained. The

absolute antenna gain is defined as the ratio of the radiated power by the isotropic

element required to produce a given value of Poynting's vector at a set distance to the

power radiated by the directional element producing the same value of Poynting's vector

at the same distance in the direction of maximum power radiation. Rewriting Equation

(11) for a directional element yields:

41rR Pay(0 )j IF(O, ) d- (12)
4ir

The absolute antenna gain is hence equal to:

W . P s 4SO 1 1 3

Gt = -2 = (13)

Pav(O) 
'F( , 

By employing the above definition, P(ma,) of the directional antenna is equal to Piso

and hence Wi 
= GtW2 . This leads to the conclusions that the maximum values of

Poynting's vector for the directional case is equal to:

Wi  W2 Gt

max 4rR2 42(14)
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As W2 is the transmitted power, the substitution that W2 = Wt can be made. This leads

to an expression for P(O, P) by utilizing Equation (8) and making the substitution that

P(max) P av(O)

av(0,) I F(6, 0)1 (15)
41rR 2

Through the use of the cross product representation for Poynting 's vector, Equation (2),

values of the electric field strength as a function of position are found as:

F6 60Wt Gt

E(O, =P 120r = F(6,cp)

E(O.) = E0 F(8, 4) (16)

It should be noted that if the Hertzian dipole or the half-wave doublet are to be considered

as the gain standards, then the values of total gain should be divided by 3/2 and 1.64

respectively.

B. One-Way Transmission

For the preceding information to be of practical use, the transmitted energy must

be received by a receiving element and receiver. If we consider a properly matched

receiver and receiving antenna which are oriented in a direction for maximum reception,

the received power W can be written as [i1:
r

W = P A (17)
r av e

where P is the value of the received Poynting's vector and A the effective crossav e

section of the receiving antenna. With the wave length of the transmitted energy

expressed in meters (X), the gain of the receiving element is given as:

4rA
Gr = 2e (18)

[1] S.A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, Sec. 9.4.
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If the receiving and transmitting antennas are of the same polarization and if the

direction of the receiving array is specified relative to the incoming energy in terms of

0' and 0', then the received power obtained by Equation (17) as a function of 0' and 0'

must be multiplied by the square of the antenna pattern function, F (0', 4''). This leads to

the following:

P GA 2

Wr = avr IF(e',4"); (19)

or:

W GtPGA r2 2

= IF( 0', ') 1 F(G, 0)1

Wt P4 ir4rR2

W G GA" 12
Gtr r 2 I F( , 0) F( I , ) (20)

Wr 2

Wt (4,rR)
2

For the case stated previously where both antennas are aligned for maximum conditions,

Equation (20) degenerates to:

W GtGrA2

__r = (21)Wt  (4zR)
2

Solving for R in Equation (21) results in:

W=1 -Wt GtGr X (22)W 47r
r

This equation may be converted directly to the maximum free-space one-way trans-

mission range or the target range at which a usable energy is received by the receiver

by letting Gr = G(max)' and utilizing the minimum useful receiver power. Equation (22)

hence is transformed into:

R _Wt F- tGmax (23)
0 W 4 A(3

min

where R0 is the maximum theoretical range. This equation is used frequently as a

standard of performance.
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C. Radar Transmission

As this paper will be ultimately concerned with two-way transmission as well as

one-way transmission, a match for Equation (23) will now be derived. Two-way trans-

mission infers the concept of reflecting transmitted energy by a remote object from the

transmitter and receiving a portion of this reflected energy at the transmitter. This

type of transmissionor radar transmission utilizes the properties of the radar target.

It is first necessary in the development of radar transmission to specify the radar cross

section or back-scattering cross sectional area. Let a be the dimension of the back-

scattering area.. It will not be the object of this paper to specify either a mathematical

or experimental determination of o* but only to assume that its fictional mathematical

value is known. A definition of ' is the area intercepting that amount of power which,

when isotropically scattered, produces an echo equal to that observed from the target [2]

Utilizing the previous definition, the value of the back-scattered Poynting's vector

at a point from the target is related to 0' as well as the incident Poynting's vector on the

target in the following manner:

P C

bs = (24)

or:

Cu= Pbs 47rR 2  (25)
P.

where P. is the incident value and Pbs the back-scattered value of the Poynting's vector

respectively. R is the distance from the radar target. In a manner similar to that

previously discussed, the received power by the radar antenna is:

2 AeP i CT

2 F(26)
4 7rR2

[2] D. E. Kerr, Propagation of Short Radio Waves, McGraw-Hill, New York,
1951, p. 33.



The value of the incident Poynting's vector is:

WtGt IF( )12

4rR2

Assuming that the transmitting and receiving antennas for radar transmission are

identical:

W 2 2 Ae o GtWt F r (0,0) F(B, 0) OR 2 47rR2 (27)

where:
G

S A2 G r
e 4r

Substituting the value for Ae yields:

W2 2 4Wr G o"
- 3 F(. )1 (28)

Wt (4 3R4

As before, afree-space radar range is defined as that range which produces a minimum

radar signal which is useful. Solving Equation (28) for this range:

R4  Wt  G2 I F(6, P) 4 (29)
Wr (47r3

t GA (30)
0; r W 4Xrr4

Utilizing the preceding, a free-space coverage factor may be determined. Substituting

Equation (30) into Equation (29) yields :

R=R 0 1F(9,.) (31)

This expression in general holds for both one-way and radar transmission. Utilizing

the coverage factor, a free-space coverage diagram may be determined. This coverage
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diagram encloses a volume inside which the electromagnetic field is larger than the

smallest useful value.

D. The Propagation Factor

Up to this point, the free-space condition has been the major consideration. In a

practical system, the coverage of transmitted energy may be largely affected by sur-

rounding physical conditions. If reasonable parameters are used in the equations above

and then the actual ranges determined from experimentation, there will be considerable

discrepancy in the magnitudes of the quantities involved. The main reason for this

discrepancy is that operation in the atmosphere close to the earth does not compare with

the conditions assumed for free-space transmission. In an effort to analyze the true

situation, the free-space relationships derived will not be disregarded but instead they

will be used as the building block in describing the new or actual situation.

Consider first a factor which shall be called the pattern-propagation factor. This

factor is defined as the ratio of the amplitude of the electric field at a given point under

certain conditions to the amplitude of the electric field under the free-space ideal condi-

tions where the beam of the transmitter is directed to the point under consideration. In

equation form, the above is restated as:

F - 0 I (32)

where F is the propagation factor, E the electric field at the point in question, and E 0

the reference free-space electric field having the same polarization as E. F can be seen

to be entirely independent of internal properties of the transmitter and dependent only

upon the properties of the path of transmission and the directive properties of the antenna.

In the presence of an earth, F is the effect of the following: (1) the diffraction

phenomenon or where the earth's shadow gives rise to diffraction of electromagnetic

energy; (2) the refraction phenomenon or the effects of an inhomogeneous atmosphere

about the earth; and (3) the interference phenomenon which is the effect of the earth re-

flecting and scattering radiation which produces an interference pattern. The fourth
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factor which F takes into account is the directional characteristics of the antenna; or

for a free-space consideration F would be:

F= I F(6, (P) (33)

Hence, the one-way transmission equation may now be written in terms of the above

effects as:

Wr GtGrX2 2 2

W2FIF r(of,(PI)j (34)
t (47rR)

Notable is the fact that F 2 is the ratio of the magnitudes of the Poynting's vector at the

point in question to the magnitude of the Poynting's vector whose maximum free-space

value corresponds to the same absolute distance as the point in question.

Not quite so easy to verify is the application of F into the radar range equation in

order to make calculations that are valid for regions other than free space. Using the

theory applied by H. A. Lorentz [ 3] in the development of the reciprocity theorem it can

be shown that the isotropic source equivalent to the radar target is (Wt G t/ 47rR2 ) F2 .

Also, using this theorem it can be proven that the propagation factor squared is the

quantity that converts the free-space transmitted energy into the energy that would come

from the target, if the target-reflected energy were incident on the maximum antenna

pattern of the receiver. Hence, the radar transmission equation can be rewritten as:

Wr G ,2 4Wr-_G 2 F 4  (35)

Wt (41r)R
4

In Equations (34) and (35) are the theoretical capabilities for determining field

strength calculations in the presence of the earth and its atmosphere. These equations

are subject only to the conditions that the transmitted energy be incident upon either

antenna or target as a plane electromagnetic wave.

While Equations (34) and k35) look relatively easy to solve in nature, it must not

be forgotten that the secret to their practicality is a correct formulation of F. In general,

it is to this desired end that a large portion of this paper will be concerned.

[3] Ibid., pp. 693-699.
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First consider Figure 1. The presence of the earth can be immediately seen to

produce scattering of the transmitted energy from the transmitter located at a height of

Z1 above the earth. This gives rise to an interference phenomenon at the receiver or

target located at a height Z2 above the earth. From the knowledge of electromagnetic

TRAMTARTTDIRECT RAY__

HORIZONTAL

BEAM MAX. 2 7

REFLECTION

ITELLIPSOIDAL

Figure 1. Ray Representation of Propagation in the Interference Region Above A
Curved Earth
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propagation it is immediately seen that the energy arriving at point (2) in space is made

up of a direct energy wave front and a reflected energy wave front which, due to their

difference in distances traveled, are not of the same phase. Or, in terms of the E and

H vector representation, the vectors representing the direct ray have not made as many

complete revolutions as have the vectors representing the scattered ray. For a more

technical discussion of the theory represented above, the reader is referred to any

standard text on field and wave theory. [4]

Hence. in view of the preceding, it can be seen that the path length difference

between the direct transmitted energy and the scattered transmitted energy received by

the receiver in the case of one-way transmission,or the equal resulting effect in the case

of a radar type transmissionmust be considered as a component part of F. Or more

explicitly, in order to show the qualitative properties of the pattern-propagation factor

F in the interference region,consider again the situation shown as Figure 1. Here will

be seen the transmitting antenna having a vertical plane pattern of F( 0) located at a

height Z1 above a spherical earth. The angles ¢1 and P2 are therefore needed to de-

termine the antenna patterns f(P ) and f(2 ) in the direction of the direct and scattered

rays respectively. Note that it has been assumed that the energy wave front can be

represented as a pencil-like ray or composed of vectors normal to the wave fronts and

in the direction of propagation. The validity of the assumption will be discussed at a

later time.

Consider that in the direction of maximum propagation of the antenna the electro-

magnetic field due to the direct ray is Ed. Then it follows that from the definition of

f(O) = F(G, P) that the value of the direct ray at an angle ¢1 (where the horizontal

dependence has been omitted) is:

Ed = E 0 f(Ol) (36)

where ¢1 and 02 are relative to the normal of Z . The distance traveled by the direct

ray to the receiving antenna is R2 '

[4] S. Ramo and J. R. Whinnery. Fields and Waves in Modern Radio, John Wiley and

Sons. New York, 1953, pp. 270-314.
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In a similar manner, the value of the reflected wave as it leaves the transmitting

antenna is:

Er -E0 fQP2) (37)

The path length of the reflected or scattered ray is R1 + R The direct and scattered

rays thus travel a path length difference of:

AR =R 1 + R3 - R2 (38)

where AR > 0 for all locations of the receiver in the interference region. Because

of this path length difference, the scattered ray is retarded in phase by a value (A R)A

where A is the quantity which converts the path length difference into its equivalent

difference in terms of the wave length of the propagated energy.

The reflected wave also undergoes a phase retardation because it is reflecting from

the surface of the earth. Not only does the reflected wave suffer retardation but its

magnitude is affected by the reflection. At this point, define r as the ratio of the inci-

dent field, electric or magnetic, to the reflected field. This is a complex quantity

expressing both the phase and magnitude changes suffered by a wave of energy reflecting

from the surface of the earth. Or, in terms of symbolic complex notation:

S--P-io

where p expresses the fraction of the incident field that is reflected and 0 is the angle

by which the incident energy is retarded.

If the difference in path lengths is expressed as the equivalent phase retardation,

A(A R),and 0 expressed in a similar manner, then the total phase retardation of the

reflected complex field relative to the direct complex field is given as:

A 0 = A(AR) + (39)

where A expresses the total phase retardation.

If we take into account the divergence of energy due to its incidence on a spherical

reflector and this quantity is denoted as D, then the total electric field strength at the
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receiving point located at Z2 above the earth can be expressed as:

Et = E r + Ed (40)

Or in terms of our previous notation:

Et = E 0 f( 1 ) + r Dc -iA(A R)f( 2)] (41)

Hence, within its limitations and assumptions, the ratio of E to E0 gives the interference

pattern as formed in space, or the pattern propagation factor.

By limitations and assumptions is meant a wide scattering of theoretical and

physical effects which for propagation in an atmosphere have been neglected in the pre-

vious analysis. Most of these effects will be discussed in Chapter V of this paper.

However, there are two factors which will be mentioned at this point as no further

consideration will be made of them. First, at the receiving pointthe energy wave fronts

will not be arriving at the same directions as has been assumed in the preceding analysis.

The direct and scattered wave fronts will in actuality be traveling in slightly different

directions. However, as found from experimentation, this is important only when the

energy wave front is vertically polarized and the reflection and incident angles with

respect to the earth differ to a large extent. In the paper these angles will be made or

assumed equal according to the well known law:

V1 - ,2
sino 1 sina2

where P1 and P2 are the velocities of propagation in the incident and reflected mediums

and a 1 and a2 the incident and reflected angles. As the incident and reflected waves

are traveling in the same medium, v 1 
= V2 and hence:

a, = 2  (42)

The second factor which will be neglected is the small spatial attenuation difference

encountered by the direct and reflected energy. In the large majority of practical cases,
[ 5]

this effect has been found to be negligible

[5] L. N. Ridenour, Radar System Engineering, McGraw-Hill, New York, 1947, pp. 58-62.
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CHAPTER III

THE FORMULATION OF THE DIFFERENCE BETWEEN

THE PHASE OF DIRECT AND SCATTERED ENERGY DUE

TO PATH LENGTH DIFFERENCE - A R

Referring to Equation (41), it is seen that one factor which must be found is AR.

Must uf the remainder of this paper will be concerned with finding these variable para-

meters as a function of Z 2 , Z and R 2 . The reason for this is that the desired end

result is a coverage diagram represented in terms of Z2 and R with Z as a fixed

parameter. There has been considerable effort devoted by various concerns and

individuals in the determining of A R as a function of the previously mentioned variables.

Some of these methods will now be presented as a background for the final method used

in this paper.

A. The Exact Equations

The geometrical situation described in Figure 1 on page 12 can be represented in

exact forms by the following set of equations:

ala 2 (43)

E. 1 - - 1, 2 (an intervening parameter) (44)Ei \%/A)i

2+ 2
R:_A ]E 2 E 2-2E (45)

e 1 2 IE2 1 (45)

4E E cs4 0-(E 2 E2 E o Cs3 0 (E2 E2 +2 E 6s - 4E2 E2 )CS20
1 2 E cos % 2(4EIE 2 4E 1 E2 s 01)c 2 1 E 2  12EE2  1 1E 2 )cos 62

4(4EE 2 cos 2 0 f 2E E2sin2 0 + 4E1E Cos 01)Cos 0 (46)

22 2 2 2 2

-(E E 2sin 0 - E 2cos 2 0 - E 22E1E Cos 0 0
1 2 1 2 1 1 1 2 Ae 1 )7

Z' (A +Z )cos 0 -A (47)
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Z' (A + Z2)cosO- A (48)e 2Ae

d=dl+d2 R 2-_(Z- ZI,)2 See Equation (58) (49)
1  (z

2 tan-

(50)

= 1 (Z' + Z2)
2 d

= 2Sin242 + 2 (51)

A = Asin + 2AeZ 2 Z2
2 e 2 e 1 (51

RA = I - AAessin 2  (53)

R3 = A2 - Aesinp (54)

AR = R1 + R3 - R2 (55)

AR = 1 + A2 - 2Aesin 2 (56)

21  Z2L= 2AZ, + 57L e 1 1 e 2 2 (7

d 1 (A e + Z1)sin2 = r1 Z'l+Z
1 2 (58)

d2 (Ae + Z2)sin =r 2
Z'l+ Z2
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These equations are referred to as exact in that they represent the geometrical

situation represented by Figure 1. Theoretically they may not be exact because they

deviate from what is physically happening or because they cannot be solved to the re-

quired precision. The derivations of all formulae are straightforward from the

geometrical viewpoint and may be checked by the reader if desired.

The use and practical application of these equations may be questioned. For an

explicit solution of AR as a function of Z1 , Z2 and R2 one would first proceed to solve

the quadratic in cos 02 from Equation (46). This would give the cos 02 as a function of

Z1, Z2 , and cos 01 . Equation (45) would then be solved for cos 01 . Making appro-

priate substitutions, AR as a function Z1 , Z2 and R2 can then be determined. Equation

(57) gives a measure of the section in which the equations are valid, or Z2 is in the

interference region. This means that if R 2 is greater than L, then Z2 has a minimum

value greater than zero. While theoretically the preceding is possiblo, at its best it is

very complicated. Also, in order to maintain the values R1 and R 3 to the necessary

degree of precision in terms of the wave length of propagation involved, the number of

accurate digits one is required to maintain can be seen to be unwieldy.

Variations in the exact geometrical representation or equations have been derived

by various writers. Most of these involve implicit relations which indeed are easier to

work with than those described previously but their use is limited in the plotting of a

coverage diagram in terms of the parameters previously stated. The University of

Michigan [6] and the Fairchild Engine and Airplane Corporation [ 71 have both contributed

concepts not generally used in the preceding equations. Equation (12) in the Fairchild

report is questionable, should reference be made to this paper. The author has not,

however, proved it incorrect even though dimensional analysis indicates an error.

16] T. B. Curtz, M. L. Barasch, et al, "Analysis of Padar and Its Modifications -

Final Report, " No. 2476-1-F, April, 1956.

[7] "Padar Investigation - Final Report," No. 64R-10, June, 1956.
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B. The Cubic in r 1

Admittedly, there are simplifications that can be made in the so-called "exact"

equations. One of these may be termed as a cubic in r 1 . Consider the following

approximation:

Z1 and Z2 - Ae  (59)

r1 andr2 - Ae (60)

Therefore:

2
r 
1

Z l Z l 2A (61)
e

2
r2

Z Z2  2A (62)
e

d1 I r1 , d2 - r , d- r (63)

r2 2 2 1)2
_tan L 2A (Z 1 + Z ) (64)

2 _ 2AeZ
1  r2 _ 2AeZ

2  - 1 2r 1e 1 +  2rj 1  4 2 e 2 ( 5

2r 3 - 3rr 2 + (r - 2AeZ 1 - 2AeZ2)r1 
+ 2AeZ r a 0 (66)

Equations (61) and (62) follow directly from Equations (47) and (48) by letting
2

cos 0 Qi 1 - Likewise, Equation (63) results from Equations (58) and (49) by

letting sin 0 Lu 0. Equation (64) results from Equation (50) utilizing Equations (61), (62),

and (63). Equations (65) and (66) follow from (64) assuming that (64) is valid. Equation

(66) has the solution:
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r - Pcos (67)
12 (3

where:

2 A (Z + r)
P ( (68)

-= Cos 2 e 3 (69)

P z1 
(69)z

For Z < Z 2 a similar equation can be found in terms of r 2 . This solution is essentially

that given by Kerr on page 113 except for the sign change in:

r +Pcos + 7 (70)
12 3

This can be shown to be incorrect if we observe that as Z - Z , the following

inequalities must hold:

r

r-- -> 0. (71)
12

cos (P :s0. (72)

However, as:

2700 > (P > 90
°

(73)

1500 > ._ + 7r >90 °

3

cos + 5 0 (74)

[8] Kerr, op. cit., p. 113.
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Hence for (71) to hold true, Equation (70) must be incorrect and the form must be that

of Equation (67). The law of cosines may be invoked to find R1 and R3

R2 = A2 + (A + Z)2 - 2Ae(A + Z)cos 0 (75)
1 e e 1 e 1 I

r - r2 -r 1  (76)
1 A A

e e

R A2 + (A + Z) - 2A (A + Z2)Cos 0 (77)
3 e e 2 e e 2)cs6(7

r - r1
0 A 1 (78)

A
e

Therefore:

/rl
A2 + )2raR -R2 A+ e + (Ae +Z) - 2Ae(Ae + Z 1)c°S A

2 e e 1 e e Z)o
e

(79)

A~e Z2)2r-r1

+ + (A + - 2A (A + Z )cos 1e e 2 e e 2 Ae

It should be noted that the cubic in r does not represent a full third-order approxi-

mation to r 1. To obtain this, the third-order term in the expansion of sin 0 or sin 0

must be used in the approximation of d and d 2 . This will not only change the coeffi-

cient of r but will also change the remaining coefficients. However, as Z /Ae and

Z2/A e are small, these changes are unimportant. Theoretically, these equations

break down to the largest extent at the extreme conditions or where Z2 is too large or

where R 2 is at either extreme.

Considerable work has been done on obtaining the solution to the cubic in r 1 .

Transformations have been found which normalize the variables in such a way that the



23

computing required for a solution has been reduced considerably. The application of this

transformation is recommended and may be found in Fishback l 9j and Burrows and

Atwood [ 10]

C. The Flat Earth Approximation

A third method of attack in determining A R in the interference region can be

found by assuming a flat earthor an earth whose radius is infinite. Under this

assumption:

Z - 1  Z' = z2 (80)

tan-1/Z 1 ) tan-l/z2

02: Kr or 2 (81)

-Zl +Z2
-2 =  tan2 (82)

r

If Z 1/r 1 and Z2/r 2 are assumed small, then:

2

R1  r1 + 1--- _r 1  (83)
1 1 2r1

2
z 2

R 3  r 2 + - r2 (84)3 2 2r 2 - 2

Zlr

r Q -1 (85)
1 1+Z2

[91 W. T. Fishback, "Simplified Methods of Field Intensity Calculations in the
Interference Region," Report No. 461, 1943.

[10] C. R. Burrows and S. S. ALwood, Radio Wave Propagation, Academic Press,
New York, 1949.
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Zr 1
r 2 (86)

2Z Z

R 2 - (87)
r

Equation (87) can be seen from the fact that pure geometrical deduction indicates

R2 2 2

= r+(Z 2 - Zl)

r2 + 2

(R I + R 3) = r 2 (Z 2 + Z)

Expanding R2 and (R 1 + R 3 ) by the binomial theorem and subtracting yields:

AR= 12 (1 .1 1 2  2
r 2r 8r4

or:

2ZlZ2

A R 2 Z (Assuming Remaining Terms Small)
r

Needless to say, these equations break down everywhere that the previous equations

did plus their additional inherent loss of accuracy brought about by the extended

assumptions and simplifications. Notable, however, is that the cubic in r1 is now re-

placed by (85) and (86). Of particular interest is the fact that these equations break

down very rapidly in the region where R 2 approaches or is greater than L and Z2 is

small.

Reference will be made in a later section of the paper as to the quantitative

magnitudes of the errors involved in these and the previous assumptions.
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D. The Author' s Analysis - The Exqact Transcendental Equations

Three methods of determining AR have so far been presented. Each succeeding

approach is simpler in terms of the computations required to obtain a result. However,

the simplifications are obtained at an increasing loss of accuracy. It is the author's

intent in this section to derive equations which will yield the desired AR to a high

degree of accuracy comparable to that obtained theoretically by the fourth order "exact"

equations but at the same time not to have the equations too unwieldy.

ZI, X,Y

CURVED EARTH v

Z2

V1

a'
a2

2

-_1-

RZ 2  X3 ,0

Figure 2. Vector Representation of Interference Region
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Consider Figure 2 which is essentially the same as Figure 1 drawn in vector

notation. The vectors V 1 V 2 ' and V3 may be expressed in the following manner:

Vl = (x - R cos o)i + (y - R sin 0)j (88)

V2 
= (Rcos 0)i + (R sin 0)j (89)

V3 = (x3 - Rcos 0)i + (-R sin 0)j (90)

Forming the following scalar or dot products results in:

V " V 2 = xRcos0-R cos 0+Rysin0-R sin2 0

xRcos 0 + yRsin 0 - R2 (sin2 0 + cos 2 0) (91)

xRcos0+ yRsin0 -R
2

- -2 2 2 2
V3 " 2 = x3Rcos0 - R  cos 0 - R sin 0

= x3Rcos 0 - R 2 (sin2 0 + cos 2 0) (92)

= X3Rcos 0 - R 2

However, by the definition of the scalar or dot product of two vectors:

1 V2 V I I IV21cosa, (93)

V3 " 2 3 IV3 1V2 1cosa2 (94)

IV1 Icosa 1  xRcos0 4+yRsin-R (95)
IV2 

(
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But:

IV 2 =R (96)

IV 1I1Cos a, xcos 0 + ysin 0 - R (97)

IV 3 1Cos a2 xcosO0- R (98)

cosa1  xcos 0 ysin 0- R (99)

x Cos 0 - R
CoSa 2  3lVi3 (100)

or:

Coc, xcos 0 +ysin - R 2(101)

cosa~~ 3_____ os___0__- __R

Cosa 2 ~ o 6 (102)

/(X3 -R Cos0) 2+ (Rsin 
0)2

Using the following three identities:

(1) x = (R +Z 1  Cos 0 1

(2) y (R +Z 1 )sin6 1

(3) x 3  R+Z 2

It is easily proven that:

Cos2 a (R +Z 1)K -2R +R 2/(R +Z 1 )K

(R Z 1)1/K- 21R 2/(R +Z )K

(1 + z /R)K + R/(R + Z 1)K-2

(I + z /R) l/K + R/(R + Z 1)K -2(13



28

where K = cos( O - 01)

22
2 (R + Z 2 )cos6- 2R +R 2/(R + Z 2)Cos 0

cos a 2  (R + Z 2)/cos 0 - 2R + R 2 /(R + Z2 )cos 0

(1 + z 2 /R)cos 0 + R/(R + Z2 )cos 0-2

(1 + Z2/R)I/cos 0 + R/(R + Z2)cos 0-2 (104)

The previous equations for c1 and c 2 are at their best not as simple as might be desired.

Assuming that 01 is known, which will be proven at a later time, and knowing from the

previous discussion that cos 2= cos 1 , the previous two equations can theoretically

be solved for 0, hence aI and a2 . However, the solution for 0 is an implicit relationship.

It would, hence, be desirable to at least attempt to simplify Equations (103) and (104).

With this goal in mind, consider the following triple scalar product:

V3 xV2" k = IV 21 IV 3sina 2  (105)

V2 xV1 k = IV21 IVI s in a1 (106)

Expanding (105):

V3 xV2 k = x 3 -Rcos 0  -Rsin0 0

Rcos 0 Rsin 0 0

0 0 1

(107)

= (x 3 - Rcos 0) (Rsin 0) + Rcos 0(Rsin 0)

= x 3 Rsin 0

where k represents the unit vector in the third dimension.
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V 2x V 1,k = Rcoso0 Rsin 0 0

x -RcosO y -R sin 0 0

0 0 1
(108)

= R cos O(y- Rsin 0) -(x - Rcoo0)(R sin 0)

= Ry cos0- xR sin 0

Utilizing the definition of the triple scalar product:

V 2 x V1  k=IV 1 1 v2 1 ( 1) (since1 ) (COS 00)

(109)

=IV 11 IV2 sin a1

V 3 x V2  k =IV 3 1I2 1 ( 1) (-slna 2 (cos 00)

(110)

= IV I IV I (-sina2

Note:

V1 xv2 0V2 1

But:

V1 xV2 -(V 2 x V1 )

Rewriting (93) and (94):

IV 1IVI2 3 2
3 2 cosa 2

IV I IVI 1 2
1 2 Cos Of1
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3 2 3 V2 ( cosa2 / 11

VxV k V sn'2 1 1 2( cosa1 )(12

Therefore:
v2 1vI

tan v1  (113)

v3 2 ,
ta e2 V V(114)

3 2

Utilizing Equations (91), (92), (107), and (108):

ta - Ry cos 0- xRsin 0

xRcos 0 - yRsin 0 - R2

ycos 0- xsin 0(15
xCos +y sin 0- R(15

tn - x 3R sin 0

a x Rcos0- R 2

-x 3sin 0

x 3cos 0- R (116)

As:

x (R + Z) CosO1 ,

y =(R + Z) sinO10

x3 R +Z2
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and using the trigonometric identities for the sine and cosine of the sum of two angles,

the following is obtained:

sin(6 1 - 0)

1 cos(6 1 - 0) - R/(R + Z1)

sin 6
tan a 2  (118)

-cos 6 + R/(R + Z2 )

As transcendental equations, these equations are relatively simple in view of the pre-

vious results. From the previous derivations, the absolute value of V 1 (or R1) and

the absolute value of V3 (or R3) can be determined. From Equations (97) and (98):

IV I . xcos6+ysin6-R (119)
1 cos a 1

x3 cos 6 - R

IV3 1 3 cos a 2  (120)

Substituting in the value for x, y and x3

(R + Z1 )cos 1cos0+ (R+ Z1 ) sin 01 sin 0- RIVl =Cosa 
1

(R + Z2 ) cos 0 - R

I3 1 cos a 2

Let

Z cos (01 - 0)

R-A
e
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Then:

I - I = R z - 1) + (Zl1x Z)/A e)d A11

1 1 cosu (121)

IV31 : R3 = csos 1)+ 2 CosA)/Ae A e (122)

To complete the analysis of A R, it is now necessary to derive an expression for

0 This is a relatively simple procedure as it results directly from the solution of

an oblique triangle. Given the following triangle denoted as Figure 3:

QC

b

Figure 3. Triangle Solution of 01 in General Terms

the angle included between two known sides b + c may be found as:

a 2tan
- 1 ( r

where:

1 c)

r (s - a)(s -b)(s - c)
r S
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For the situation pictured in Figure I

2A - R +Z +Z
e 2 1 2 (123)

r (s - R2 )(s - Ae - Z 1 )(s - Ae - Z2 ) (124)s

0 1  2tanl I (s-A e  Zl)(s-A e - Z2) (125)

(s - R2 )s

The logical procedure to follow when solving for A R from these equations is to first

solve Equations (123), (124) and (125) knowing A , R 2 , Z1 and Z2 . Having once solved

for 01, then Equations (117) and (118) may be solved for a1 and a 2. Equation (121)

and Equation (122) may then be solved directly for R and R . AR is then found as:

6R = R 1 + R3 - R2

The only difficulty of any consequence when solving these equations when compared

with the previous exact formulations lies in the solution of Equations (117) and (118). It

has been found by the author that these equations are solved rapidly by using the following

technique. First, calculate a value of ¢2 by using the flat earth approximation:

by the approximation r a5 R2

z2
r = tn2 (127)

2 tan 0

r2
0 2 -(128)

e
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Having thus found an approximate value for 0, calculate the tangents of a 1, and o2 by

Equations (117) and (118). Then find the difference between the tangents of a1 and 02

and call this D. Assuming that D & 0, then the following may be stated, assuming a

flat earth:

r .rr r r

Z 1 Z2 1 2 1 Z 2 )

D =  r 0A (129)

Assume that r/ Z is the factor which is correct and that 0 (A) (1 / Z + 1/Z2 is

causing D to deviate from zero. The following then can be said:

0= - 0 A -L +±Z (130)
Z e(Z Z2

where 0 0 is the corrected value of 0. Subtracting Equation (130) from Equation (129)

yields:

0 A(=+ s D+ OA(±+±)

or:

0 DAi±i- S 0  (131)

From Equation (131) a new value of the tangents of a1 and ac2 may be determined. If

the difference of the tangents of these new angles differs from zero within the accuracy

being carried out, then the author suggests the use of the following technique.

First, assume a straight line variation for the difference of the tangents of 1

and a2 at a proximity of the reflecting region of interest. Refer to Figure 4.
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Y

z

GAXo" x
z 6 (RADIANS)

STRAIGHT- LINE
APPROXIMATION

ASSUMED IN
THIS DIRECTION

Figure 4. Straight Line Approximation of the Difference in the Tangents
of a 1 and a2 vs. the Angle 6.

In essence, the previous two equations have given the two noted points 02 A 2 and 01 A 1.

From theory stated previously, it is desired to have A 0 for absolute accuracy.

Hence, where M is the slope of the line and B the 0 intercept:

0 = M04 B (132)

where

(A1 -A 2 )
(0 1 - 2)

B A 2 -M02

Solving for the value of 0 - 00 which will make a, - a 2 
= 0 yields:

-A 2 (02 - 0i)

0  2 A 0 (133)02 2

where in general:

A2 = (tana 1 - tana 2) for the flat earth approximation.
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A, = (tana 1 - tana 2) for the incremented flat earth approximation or from
Equation (131).

0 = the value of 0 obtained from the flat earth approximation.1

02 = the value of 0 obtained from the incremented fiat earth approximation or
from Equation (131).

The above procedure may be repeated until the desired degree of accuracy is obtained

by making the appropriate substitutions for A 1 , a 2 01 and 02 for each pass through

the approximations. Theoretically, any desired degree of accuracy may be obtained.

In practice, the author has found the above procedure to converge very rapidly. In

general, within a range of three hundred meters and with altitudes above a few meters,

the values of the two tangents can be brought to ten to twelve decimal places of accuracy

by no more than six repeated approximations of Equation (133). For values of Z1 and

Z2 above two thousand feet the convergence appears much more rapidly.

The preceding equations, therefore, provide a method within the accuracy of the

geometrical framework, by which AR may be determined to within any theoretical

desired accuracy ranging from the flat earth assumption to the exact equations. Ad-

mittedly, the labor involved increases with the desired accuracy. But, seldom are the

flat earth approximations within the realm of reality for a physical situation, especially

when the transmitted energy in the interference region is of a wavelength in the vicinity

of ten to one hundred centimeters. This is especially true for small values of Z2 .

Also obtained has been an increase in the accuracy of A R for a specified number of

significant digits carried in the calculation. For all calculations carried out in meters,

the analysis of AR by the method outlined under the heading of the cubic in r1 will re-

quire twenty decimal digits of accuracy to maintain A R accurate to the nearest

one-hundredth of a meter within the interference region previously covered. The

author's approach requires approximately twelve decimal digits of accuracy to maintain

the same information. The author's approach does not make any assumptions such as

are made in the evaluation of the cubic in r1, hence it is inherently more accurate.
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CHAPTER IV

PROPAGATION FACTOR COMPONENTS OTHER THAN A R

Having spent so much effort in obtaining A R, which was previously shown to be

a component of F, one might reasonably wonder if it might not have been better to find

out what other components made up the factor F . If they proved to demand a mul'.i -

plicity of the work previously described, then the analysis of A R might have been over-

refined. The overall validity of the factor F can be no better than its weakest constitu-

ent. Luckily, however, the determining of A R is the major stumbling block in finding

the component parts of F.

A. The Complex Coefficient of Reflection

Equation (41) indicates that a second factor which must be determined is .

This factor takes into account the reflections of waves from the earth' s surface. The

reflection factor was previously defined as:

* = 
-

If the electromagnetic waves incident to the reflector are horizontally polarized, then

r is defined as the ratio of reflected to incident electric field or the ratio of the verti-h

cal components of the magnetic field. The ratio of reflected to incident horizontal

components of the magnetic field is -Fh' For vertically polarized waves rv is defined

as the ratio of reflected to incident magnetic field. The ratio of the vertical components

of the electric field or minus the ratio of the horizontal components is likewise equal

to T .
v

From these definitions, Fresnel' s equation for the smooth plane earth can be

derived:

-iv (K1/K0)
2 sin - 2(K /K0

)2 cO s 2

v 1 0 2 '1 0' -co
r = p - (134)

v v(K I / K 0 ) 2s in 2 +
-(l K7 c o s 2 2
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-1 h sin - (K1 /Ko)2 - co2 (rh 0 2hI(15
h h sin 02 + /(K 1/K 0)2 _ coo 2

The author will not derive these equations here as they may be found in any standard1 11]
work . A variable in these equations is K where R2 is defined as the propagation

factor of the earth:

-2 2K = W ;A - jW/,AO (136)

where j = T, w is the frequency of the propagating energy, A the permeability of the

earth expressed in henries per meter, a the conductivity of the earth in ohms per meter

and E the complex dielectric constant of the earth in farads per meter. The properties

of the earth are expressed as relative values.

The variable K0 is the square root of the propagation factor for air which for the

air at the surface of the earth will be assumed approximately equal to that of free

space.

2 2
K0 = 'v0E 0  (137)

where M0 and E0 are the permeability and dielectric constants respectively for free

space. The permeability of the earth can essentially be said to be equal to that of free

space. Hence, in view of the above (K1 / K0 )2 can be written as follows:

(K/K0) 2=E/E jT/WE E j E (138)
10 0 0 1 2  c

The quantity g/ 0 is the usual dielectric quantity commonly listed in tables for dielec-

tric materials and? is called the complex dielectric constant. In terms of the MKSc

system of units:

C = cT/WE 0 = 60 A (139)

[11 J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, Secs.
9. 4 and 9.9.
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where X is the wavelength of propagation expressed in meters. Hence, (K 0)2 can

be simplified to:

Tc = E1 - j6OA9 (140)

HOR IZONTAL POLARIZATION

P

VERTICAL POLARIZATION

0 "  "

VARIATION OF MAGNITUDE 2

7T

HORIZONTAL POLARIZATION

VERTICAL POLARIZATION

0

VARIATION OF ANGLE 7r

Figure 5. Variations of Complex Coefficient of Reflection With Incident
Angle 0'2
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In general, the expected behavior of Equations (134) and (135) can best be

described with few words and the use of Figure 5.

B. The Divergence Factor

A third factor which must be determined is D as seen from Equation (41). This

factor takes into account that the electromagnetic energy is weakened upon reflection

from a spherical earth by a divergence of the concentration of the energy. The

S2

*2Z
2  /

\i *I R/

EARTH
S/' URFACE

FICTITIOUS CENTER

Figure 6. Curved Earth Geometry for Computation of the Divergence Factor
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following analysis will help to clarify the general concept involved. Reference should

be made to Figure 6. This analysis was first carried out in detail by van der Pol and

Bremmer 12] in a detailed analysis of defraction of waves by a spherical conductor.

The concept is based upon the principle of comparing the density of the reflected

rays from the earth or sphere with those that would have been present had reflection

occurred from a plane reflector. The field strength difference is proportional to the

square root of the ray intensity difference. The analysis is carried out by comparing

the cross section of a cone obtained from a spherical reflection with that obtained from

reflection from a flat conductor.

The rays leaving the transmitting antenna have an effective cross-sectional area

of:

R 2 sin I do da (141)

where a is measured in a plane perpendicular to the plane of paper and R is the5

straight line distance from the antenna at Z to the antenna at Z 2 . Reflection from a

plane earth would result in an equivalent cross-sectional area of rays equal to:

(R 1 + R3)2 sin 01 do, da (142)

This is because the reflective path length appears from an image directly below the

transmitting antenna at a point -Z . The cross-sectional area of the rays in the spherical

case is s or s2 cos 03. From the geometry, s2 may be written as (Ae + Z2) sin 0 do .

Hence, the ratio of the cross-sectional areas may be expressed as:

(R1  + R 3)2 sin 0 d l da
= 2(143)

(Ae + Z2)2 sin 0cos 0 3 d~da

[12] B. van der Pol and H. Bremmer, "Further Note on the Propagation of Radio Wave
Over a Finitely Conducting Spherical Earth," Phil. Mag., No. 182, March 1939.
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Or, the divergence factor is equal to:

R1 +R 3  / sin d01 01  (144)A + Z A + sin 8cos 43 d9

Expressing d 0 in terms of 01 and 8 permits D to be expressed in the following con-

venient manner. Reference may be made to the original works for the details involved.

Ae(R 1 + R2) V sin 02 cos 02  (145)

V (Ae + Z2)R cos 43 + (Ae + Z)R 3cos 'l (Ae + ZI)(Ae + Z2)sin 0

Equation (145) is a function of the variables previously expressed as desirable. While

it may be slightly unwieldy, the author has chosen to leave it in its present form so

as to be of the same order of exactness as the previously derived expressions for A R.

In general, D is seen to have its smallest value when the reflected energy approaches

a grazing angle of incidence. As 42 decreases, D will approach unity.

C. The Implementing Expressions

It now remains for the functions which implement the previous expression to be

derived. Referring again to Figure 1, the tangent line designated as L is needed to

determine when the functions are valid. By this it is meant that when Z2 is located

within the interference region or above line-of-sight of the transmitter, then the pre-

vious equations are valid. If the value of Z2 as combined with a value of R2 places the

receiver or target out of sight of the transmitter, then the equations are not valid. Note

that a line-of-sight correspondence between the two is also a degenerate situation. For

a given value of transmitter height, the distance to the horizon may be found in the

following manner. From Figure 1, it will be seen that a radius vector drawn from the

center of the spherical earth intersects the tangent ray from a height Z1 such that the

angle between these two is equal to ninety degrees. Hence, the vector whose magnitude

equals the radius of the earth, the tangent ray, and the vector from the center of the
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earth to the transmitter form a right triangle. Therefore, the distance from the trans-

mitter to the horizon can be expressed in the following manner:

dh= (Z 1I A.) 2 -A' (146)

If the value of R2 , an independent variable, is greater than dh, It is required to know

at what height Z2 , the receiver or target, must be in order that it falls into the inter-

ference region or where the equations are valid. Consider the limiting case where R2

is at some point tangent to the surface of the earth. Call the distance from the point

of tangency to the projected vector from the center of the earth to the receiver or

targetd1:

dI = R 2 - dh  (147)

A radius vector from the earth I s center to the tangent point is again at right angles to

dh or (R3 - dh). Hence, the intersection of the vector from the earth' s center to the

receiver by the vector dI occurs at a magnitude of the target-directed vector equal to

d2
d2 2

d = A
2 +d 2

2 e 1

The minimum height Z2 in the interference region is, therefore:2J

2 2Z 2-A+/ A e+d (18
2mi n  - e e 1 (148)

In order to specify f( 1) and f(P2) as a function of R2 , Z1 , and Z2 , the following

analysis may be carried out in reference to Figure 7 which is taken directly from

Figure 1. The analysis involves first the derivation of 6 From an oblique triangle

consideration define a variable T and U as follows:

A+Z2+Ae+R3 2A+R3+Z2

T=Ae +Z2 +Ae +R3 2Ae +R3 +Z2(192 2 (149)

/(T -R 3 (T -AeT - A -Z 2

U e (150)
T
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Figure 7.Ecrtfo Fgr sdinteDrvto

Hencee fro therp preceding:sd n h Driato

6 = 2 tan-1  U
T-Ae -Z2

=2 tan 1  3 e e Z2)

(T- 3 (T - Ae z2

6 = 2 tan1  3( -A eZ) (151)
T( Ae z2)
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Hence, Equations (149) and (151) serve to solve for 6, having previously determined

R 3  The following relationships follow directly from Figure 1:

63 - 6- 0 (152)

4= 7r- 6- 01 (153)

2=2 l 2 - a 2 (154)

0 2 = -( - 4) (155)

The value of y in Figure 1 is determined in a manner similar to Equation (151):

2 t a n - 1 (S - R 2)(S -R 1 ) (156)

S(S -R3)

where

R1 + R2 + R3
2

Hence l -= jY I

0I 2 tan- 1 (S - R2 )(S - RI )R3) -tan 2 I (157)

1S(S -R3)2

Within the preceding framework are the capabilities of analyzing an airborne-type

transmitter with respect to its pattern of coverage. The analysis has been carried uut

by the method of ray analysis of the electromagnetic energy leaving the transmitting

antenna. The equations are, of course, subject to their noted limitations.



47

CHAPTER V

LIMITATIONS OF THE ANALYSIS

At the start of this paper, the author mentioned that all equations were based

upon the ability to represent electromagnetic waves by straight lines or rays. The

author also indicated that this assumption may not always be exact or true. In the pre-

vious analysis, it was assumed that at all times the rays appear as normals to the

surfaces of constant phase of the electromagnetic wavefronts. However, in the vicinity

of sharp corners and in regions where the rays exhibit odd properties because of re-

fraction, such as at a cusp, then the energy can no longer be said to follow the rays and

geometrical optics fail to give results wvhich are truly meaningful. At this point, it is

required to analyze the energy by introducing the field of physical optics. Physical

optics is not the theme of this paper but the following analysis should indicate to the

reader where the previous analysis does break down and if it is important in the general

area of pattern coverage. Also covered in this section will be surface roughness and

the effect of the index of refraction of the atmosphere.

A. The Equation of the Ray

Geometrical optics may be invoked to analyze the situation where the atmosphere

is non-homogeneous. In a homogeneous atmosphere, as previously assumed, the rays

indeed represent the wavefronts and their direction of travel. In any atmosphere,

Maxwell s equations apply, and hence they will be stated for a desired end result:

V. D=p (158)

V. =o (159)

V x E= - (160)at

at

pH (162)
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S= LE (163)

The parameters are defined as follows: D is the electric flux density, p is the charge

density at the point in question, B is the magnetic flux density, E is the electric field

intensity, H is the magnetic field intensity, p is the permeability, and e the dielectric

constant. In free space a equals zero and ;A and c are not a function of time, and

hence:

x (164)

Pat

VxH " 7 a (165)

Then, the wave equations of free space may be determined:

aHVx (VXE) = - pVX at

V(V E) -v E = - A - - (VxR)

But:

V(V. E) = 0

Therefore:

2-
V E= C M(166)

a t
2

In a similar manner:

A E aH (167)
a t

2

Equations (166) and (167) are the wave equations in free space. If we assume that all of

the propagated energy can be represented in a sinusoidal form, then E j Wtcan be used

to represent the time variations of all fields and currents involved. The second time

derivative can hence be represented by -2 where w is the radian frequency of the

propagated wave:

V2E = 'EW 2E (168)



49

or:

2 A.Ew 2H (169)

It now behooves us to find a solution to these equations. In general, the solution may

be sought in the following form. Either Equation (168) or (169) may be considered.

Considering Equation (169), the solution is:

H Ae Ws (170)

A and S are real functions of position. If Equation (170) is substituted into Equation

(169) and the real and imaginary parts are equated to zero, the following results:

(V S)2 V2 A 2
A w2 

-t = 0 (171)

V2S+ 2( • VA) -0 (172)A

where:
2

77 = JA

If w2 is quite large, then Equation (171) may be written as:

2 2(VS) = (173)

The solution to Equation (173) is simply to find a function whose gradient of the magni-
2

tude, but not the direction, is given as 7 . Hence, according to the type of wavefront

to be represented, a surface may be chosen where at every point we assign a constant

value of S, say S0. The gradient of S is perpendicular to S at each point in question

and VS may be completely defined. To find another surface S = S0 + S, perpendiculars

to the defined surface may be constructed of lengths equal to VS / 77 where 7 is the value

of the index of refraction at the point in question. The traces of the constructed per-

pendicular vectors then define the desired surface. Hence, this is the method of

producing surfaces of constant S. As VS - 0 in the limit, Equation (173) is satisfied.

The surfaces of constant S represent the electromagnetic wavefront. The perpendicu-

lars represent the rays used in the previous derivations. The differential equation of

the ray will now be determined.
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Consider the surface of Figure 8 to represent a wavefront.

'7 dt

t

T l  t +dt
U

T

T ~ YN

WAVE FRONT

Figure 8. A Vector Analysis of a Wavefront

In this figure, t is the normal unit vector to S and hence represents the ray. At a

point T I on the ray t at a distance S + A S, t + dt represents the direction of the ray

tor tne new suriace at Y* . At point f , the vector representing T' is t ds/7; as

IVS I = 7 and dS/17 is in the direction of VS. Hence at T I , t + dt can be drawn per-

pendicular to S = S + A S. Let u and v be unit vectors perpendicular to t. By definition

v = t x u. T' I is a point along u a distance dp from R. Ti I I is in the direction of t

at a distance dS/( 7 + Vq • udp) where 77 + V77 udp represents the new value of

• TV and T' I I can both be proven to lie in the same wavefront. As 7 is assumed not

to change in the v direction, it can also be proven that t + dt is normal to the plane

specified by T' T''' and v. Hence:

RT t I= dpu + - + V1 . udp t (174)

7
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T'7 = R--- RT' -- =dp(u - 7 Uz dat (175)

where:

da = dS

as u x v = t and t x v = -u

t+dt= T'T'f' xv t +V n " u  dau (176)
IT'T''' 1 17

hence:

d =_ (U) (177)

Equation (177) is the differential equation of the ray. While its derivation may leave
[13]

something to be desired, the author refers the reader to Kerr , which suggests the

foregoing analysis. Equation (177) gives a method for obtaining a ray type analysis from

a direct consideration of Maxwell ' s equations. Hence, knowing a point R on the energy

wavefront, a point T' can be determined by choosing a value of da.

RT' = tdo (178)

The direction of the ray at T ' is equal to:

t(T') t(R) + dt (R) d (179)

As da -0, the segments so obtained approach the continuous ray.

B. The Effect of ij

It is now interesting to look at the ray pattern for first a homogeneous free-space

atmosphere and then the stratified atmosphere. For the homogeneous atmosphere,

clearly Vi7 is equal to zero. Hence from Equation (177) dt/dU is equal to zero.

Hence from Equation (179) the rays then can be seen to be indeed straight lines.

[131 Kerr, op. cit., pp. 41-50.
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However, for the time, assume that the physical earth conditions may be repre-

sented by an index of refraction which changes only in the height direction. If the

earth and its atmosphere are represented by the conventional x, y, z coordinate system,

then 77 is everywhere only in the z direction. It then follows from the ray equations

that for this somewhat idealized case of a stratified atmosphere that the rays repre-

senting the correct energy wavefronts are curves lying in planes passing through the

z axis. This can be better seen if the absolute value of Equation (177) is obtained:

It 1 - u (u)

If IV7 I is considered vertical, then IV71 I u = IV7 I. Also, if 77 is considered

approximately unity then:

1 _ I
R

where R is the radius of curvature. Hence for a constant gradient of 17 the rays are

approximately arcs of circles.

C. The Modified Index and Effective Ae

Under these assumptions, the straight-line ray analysis is seen to fall apart.

However, it is possible to introduce a new parameter called the modified index of

refraction N. The author will mainly state the following results obtained from Kerr.

A modified index of refraction is obtained by considering Snell' s Law and the previously

derived ray equations:

N ( +Z 7 (180)

as 7l a 1.

Where as 77 generally decreases with height Z, where A is the radius of the earth,

the modified index N will be seen to increase with height. When 77 decreases linearly

with height:

77 = 70 (d77) Z (181)
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where the rays are represented by straight-line segments instead of segments of arcs.

The previous is obtained by a consideration of Maxwell' s equations, the ray tracing

equations, and Snell' s Law.

If d7/dZ (Z) is small compared to 70' the value for free space, then:

N = (1 + -- ) (182)
e

where:

1 = 1 cl (183)
A e 0 dZ A

A represents an effective radius of the earth, and 1O 0 1. Measurements have shown

that, with the exception of a few hundred feet close to the earth, the gradient of 77 is

such that the effective radius of the earth is:

A = 4/3 (True Radius) (184)
e

Hence, through the utilization of an effective earth' s radius, a linear profile for the

index of refraction may be taken into account in the analysis of the interference region.

For a profile other than that of the linear case, the preceding becomes a poor assump-

tion. However, the conditions may be so varied from one physical situation to another

that it is impractical to attempt to obtain any type of a general qualitative analysis. If

the profile for the index of refraction cannot be assumed linear, then the analysis

would fall under a special classification such as duct propagation.

D. Additional Limitations on a Ray Analysis

In the solution of the radar wave equation, the ray analysis was derived under the

assumption that:

V2A

V2 A<< (185)

Aw2
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Through the analysis of this inequality and Equation (142) it can be shown that Equation

(185) implies the restriction that the index of refraction must not change appreciably

in a distance equal to that of the wave length of propagation. This is the reason that

as the frequency increases the assumption of Equation (185) becomes increasingly more

accurate. For a ray analysis it has been found that the preceding is in general valid

from physical measurements.

An analysis of Equation (142) also imposes the restriction on the ray analysis

that the fractional change in the spacingbetween the bundle of rays representing the

traveling energy, must be small when compared to unity over a distance of one wave

length. In essence it must be remembered that a single ray has no meaningbut rather

the single ray is used to indicate the composite bundles of rays which in turn represent

the energy wavefronts. Hence, in the analysis, this condition is violated whenever it

assumes that a focus exists. In considering rays which are curved, this condition is

also violated when the rays undergo a change in sign of their curvature. To analyze

the conditions imposed by Equation (142) it becomes necessary to resort to physical

rather than geometric optics.

The previous ray analysis was presented with the intent to stress that problem

areas exist where a ray analysis in the interference region may lead to erroneous re-

sults and conclusions. The reader should hence keep these areas of validity, and the

assumptions that are made in the analysis,in mind when using the theoretical geometri-

cal equations derived for the interference region. The author did not analyze in detail

these situations where the ray analysis leads one into a meaningless procedure. The

many different situations which may arise should be given their own separate analysis

utilizing physical optics or the wave equations and physical optics. For the remaining

section of this paper, it will be assumed that the index of refraction changes linearly

with height and that the wavefronts may be analyzed by the method of straight ray

analysisassuming the modified radius of the earth to take into account the physical

curvature of the rays assuming a linear profile for 7.
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E. The hough Reflector

At this point, it might be beneficial to analyze the effect of the reflective surface

roughness. It has been previously assumed that the surface-could be represented by

an even or smooth boundary with no irregularities. Consider a roughness whose height

is equal to h. Let 0 represent the angle of incidence. Reference may be made to

Figure 9.

INCIDENT REFLECTED
RAYS RAYS

SURFAC
ROUGH h

NESS I:

Figure 9. Phase Difference between Rays Reflected from Two
Levels

The phase difference between the two rays is equal to:

AR = 2hsino (186)

which corresponds to a phase difference of:

4lrh
KAR - - sin • (187)

Hence, in terms of this phase difference, the surface roughness may be specified.

When the phase difference equals 7r, the surface is effectively its roughest. There is
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no established criterion on just what constitutes a rough surface but the following may

be chosen:

hsln < (188)

If h sin 0 < this surface may be assumed smooth.

Needless to say, this is only a crude quantitative analysis of surface roughness.

If the irregularity is of the order of a wave length, then the problem of refraction

should be considered. Equation (188) does, however, emphasize that the reflected energy

is less affected by a given height of roughness as 0 decreases or as 'X increases. For

a surface for which the roughness has to be represented as a statistical distribution of

irregularities, the method of analysis is undeveloped at this time. Truly a ray analysis

fails for this situation and at present electromagnetic wave theory has trouble handling

the boundary conditions involved for a statistical distribution of surfaces. Hence,an

analysis of this type at the present state-of-the-art is made by use of rough and simpli-

fied refraction theory or from direct physical observations and attempted correlation.

However, very little may be said at the present time in terms of a definite correlation

between roughness and reflection.

There has been some work done by assuming that the surface roughness can be

represented by a series of ellipses within which a given phase retardation for reflection

can be assumed. The basis of this assumption is that a single reflected ray is in essence

representing radiation from the actually illuminated surface. In reality a large surface

is illuminated by the incident energy. Currents at the surface are then induced which

in turn cause radiation in all directions. At a specific point in space, the sum of the

induced radiation components yields the reflected field. The area and dimension of

each ellipse can be derived in terms of the wave length of radiation involvedsuch that

the phase of the radiation from each ellipse is essentially constant. If the surface

roughness is consequently larger than the calculated ellipse, then an analysis can be

carried out by assuming essentially multiple reflection points in a ray analysis and

making calculations based upon this assumption. The usefulness of this techniquein

general,may be limited and hence the mathematical derivations have been excluded.
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However, the reader should become aware of the surface roughness problem in a

theoretical analysis. Even if the surface roughness over a given area of reflection in

a physical situation could be specified, which is many times difficult, the analysis

techniques are not well defined. A qualitative analysis for each physical situation

involved may be made in respect to the preceding, but to attempt to obtain a quantitative

type of analysis is almost hopeless in view of the parameters involved and the state-of-

the-art. It appears that a theoretical analysis should be carried out by assuming a

smooth earth and then modifying the results qualitatively should the roughness phenome-

non appear to be prominent in the overall analysis.

F. Antenna Phase Pattern Effect

It might be interesting at this point to consider the situation where the energy

radiated from the transmitting antenna is not of the same phase in the direction of 01

and 2. From the previous analysis of F the following conclusion can be immediately

drawn. If f(O 1 ) or f(q 2 ) are complex, then they can be represented as a complex number

in the expression of F. Hence, the analysis as carried out in the derivations need to be

only slightly modified. The effect of such circumstances would be difficult to analyze

in general. However, one would expect that the shape of the lobes of coverage of the

transmitting equipment would be changed. In other words, the area of maximum coverage

could be governed in this fashion.

The feasibility of being able to specify a phase difference from the different parts

or sections of the antenna is a different problem. So far as the author knows, no

commercial producers of high-powered antennas specify a phase difference in radiation

from various sectors of their antennas.
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CHAPTER VI

A DIGITAL COMPUTER ANALYSIS

It is appropriate at this time to present a method which is applicable to finding

the coverage diagram of a transmitter located over an assumed smooth surface and in

an atmosphere which has a linear profile for the index of refraction. The type of trans-

mission will be assumed as two way or the coverage diagrams obtained will be that for

a radar. The method will involve the solution of the equations of Chapter VI (A) by a

high-speed digital computer - specifically the IBM 704 or 709 or 7090. However, the

resulting computer program should give considerable help to the reader in applying the

techniques to any digital computer.

A. The Necessary Equations

The necessary equations to completely specify the problem and plot the coverage

diagram are as follows. Reference should be made to Figure 1.

1. Equation (30) gives the free-space radar range equation:

R= w (30)
0 W 4 4 (0

where G is the maximum gain of the transmitter, X the wave length of the transmitted

waves, W the peak power output of the transmitter in watts, Wr the minimum value

of useful power to the receiver, and 0* the target area in square meters.

2. The following equation is useful to give the maximum possible value of R2

under ideal conditions:

R2max = 2R0 (189)



60

3. An empirical solution for the radius of the earth as obtained by Massachusetts

Institute of Technology ' s Lincoln Laboratory will be used. This equation assumes an

ellipsoidal earth:

Ae = 1852(3438.26815 + 577804 cos(2L) + 0. 01222 cos(4L) + H rs) (190)

where L is the latitude in degrees of the area covered in reference to the geometric

north pole, and H is the height above sea level in meters of the area involved. Ars

linear profile for the index of refraction will be assumed in all calculations, hence the

effective earth radius will be 4 / 3 the calculated value. The region of reflection will

be assumed spherical after the above computation.

4. The two equations which indicate the boundary of the interference region

will be employed. These equations previously appeared as Equations (146) and (148).

The distance from the point Z1 to the horizon is:

dh= (Z 1 +Ae)2-A2 (146)
e e(1)

If R2 is greater than dh:

2 2
Z mn+ A+ d2 min e e 1

d1 = R2 - dh

5. The value of the angle formed with the center of the earth as a function of

Z1 , Z2 , and R2 is a desired parameter. From Equation (125) the angle results:

-1 (s -A -Z)sA -Z

01 2tan-1 e 1 e Z2)
S(S - R2)

(125)
2A + R2 + Z1 + Z2

2
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6. The value of the tangent of a1 and a 2 is needed to find the distances R1

and R 3 , Equations (117) and (118) rewritten appear as:

sin(0 1 - 0)

tana = sin11)

tana 2  - cos 0 + R/(R + Z2 ) (118)

7. The values of R1 and R3 are hence given by Equations (121) and (122):

RCos (121)

where:

Z =cos(O1 - 9)

R [(cos 0 - 1)+(Z 2 cos0 ) /A] e  (
R 3 =, cos a 2  

A e  (122)

8. The value of 6 is given by Equation (151) as:

-1 (T -R 3)(T -Ae)
6=2tan T(T-A e - Z2)

(151)
R3 + 2A + Z2

2

9. From Equation (151), the values of 03' 04, 02 and 02 may be determined

as:

03 7 - 6- 0 (152)

04 6- 01 (153)
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10. The value of P is needed for completely specifying the transmitter func-

tions and appears as Equation (157):

2 a-1 (S - R 2 )(S - R1)

S(S-R 3 ) 2%

(157)
R 1+R 2+R3

2

11. The complex values of the coefficient of reflection are given by:

IF: sin 02 - C cos?p 2  (134)
Tsin2+ E os 0

TP l~ Ecco i2  (135)
h J 7 2

sin 02 + ccos 2

where (v) and (h) designate vertical and horizontal polarization respectively and:

F equals c j6 0 X ap with units as previously defined.
c 1

12. The divergence of energy from a curved surface is taken into account

by D:

D=A e (R1 +R3 sna1csa1(145)

V'(A e + Z 2)R ICos 0 3 + (A e + Z 1)R 3 cos 0b4 }(A e + Z 1)(A e+ Z 2)sin 1
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13. From Equations (32) and (41), the propagation factor F is given by:

F = j[f( 1 ) + o2) rD -J] I (191)

where:
2W

(AR) (192)

AR=R 1+R 3 -R 2  0 (193)

C -jy = cosy - j sin (194)

14. It will be found convenient to specify a quantity K2 as:

•5 R0

K = R2 0 (195)
2 R 2 R2

21 2
2R0

From Equation (28), the power received by the radar receiver is equal to:

G22 a 4

Wrl- 3= )24 Wt (196)
(47r)3 R4

with units as previously defined. Utilizing Equation (30):

Wt GA
R W 4 4r

K2 R r
K2 -R r R (197)
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Therefore:

K2 F 4 = Wt a G2X2 F 4

WK2 V 4ff Ir2 4r (4 R 2

Wt F4G2A29

Wr (4 )3 R24

Wrl (198)

W
r

Hence, from Equation (198), the target as a function of ZI , Z and R2 is within the

pattern of coverage of the transmitter if:

14 1JK2 FI 4 - . (199)

The target is outside the area of coverage of the receiver if:

IK2F1 4 < 1.0 (200)

Hence, the pattern of coverage is determined by assuming a fictitious target over a

suitable grid representing the interference region and then determining at each point

if Equation (199) or (200) prevails.

The preceding equations have been chosen because they are advantageous for the

purpose of plotting a coverage diagram. First, any desired degree of accuracy may be

maintained. Secondly, they are functions of the parameters used in a coverage analysis.

Thirdly, they represent, in as far as is feasible, the actual situation involved. True,

some situations have been idealized. However, the composite relations are worthy of

a detailed analysis because they give an insight into the various relations involved. In

many cases, they approach reasonably well the practical situation. This is especially

true for an area over the ocean. This is because the surface of the sea does not differ

from the theoretical as greatly as a terrain. Certainly, they provide at their worst,
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basic building blocks upon which the coverage analysis may rest. This is becoming

increasingly important in establishing high frequency criteria for design.

B. General Computation Logic

The general logic used to solve the previous equations is to digitally trace the

pattern of coverage as formed in space. The logic first assumes some starting

value of range R2 and target height Z2 . At this set value of R2, the value of Z2 is

reduced until the boundary condition between Equations (199) and (200) is satisfied. The

programmer must indicate whether this first point is on the top or bottom of an assumed

lobe-type coverage pattern. The stated necessary equations must be solved to test for

each point in space considered. When for a set value of R2 the correct value of Z2 is

determined, then a tabulation of the variables is made and R2 is increased or decreased

according to the point being on the bottom or the top of a lobe. The maximums and

minimums of the coverage pattern are tested by A R changes and by changes in the sign

of the difference between two successive power calculations by Equation (198). Practi-

cally, the logic is as shown in Figure 1M

N

I

-r

I-

w- LOBE CHANGELOECA E

0 PRINT-OUT X DIGITAL
POINTSLOGIC

"r ,,,STARTING

RANGE OF TARGET FROM TRANSMITTER-R 2

Figure 10. Pictoral Logic of Pattern Tracing
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Much time has been devoted to applying and perfecting the rough outline of the

logic previously presented. Its many obscure points require a thesis for elaboration.

A rough outline of the program written by the author will be presented. Reference to

the particular sections of the Fortran listing should be made to pages 73 through 87.

The Fortran logic is a working logic and has been used on an IBM 7090. Some of the

results may be found in the appendices. The following is a list of the major program

symbols in the terms of symbols used in this paper:

AE = radius of earth

ARTHO = horizon range - L or dh

Z2US = Z2

RAN = R2

ANG(2) = 0

ANG = 0 1
1

TAG2 = TANa

RANGI = R

RANG3 R3

RANG13 = A R

APHO2 = a2

APHOI =

GMR = Re (r)

GNI = Im(r)

DE = D

S12 = 2

S13 = 3

S14 = 4

TATAl = 1

TATA2 = 2

ATA = 6

FELDI = F
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CALL ( ) indicates a double precision routine

DPREAD - Double-precision read of Data Cards

DPADD - " t +

DPMPY - " " x

DPROOT - " " %-

DPSUB - to -

DPDIV - "

ASDP - SIN
- 1

DPSIN - SIN

DPCOS - COS

Referring to page 73, Section A of the Fortran listing is a prologue to the main pio-

gram. It assigns storage space for double-precision quantities which are used in the

program. Double-precision operations maintain at least fourteen significant decimal

digits. These are required at points previously noted. The general accuracy of a

digital computer the size of the IBM 7090 is seven significant decimal digits. Note

that all sections of the Fortran listing precede the symbol.

Section B of the program reads in data stored on punched cards. Data Card 1

must contain in order of their appearance in fields:

H - the maximum gain of the transmitting antenna.

B - the wave length of propagated wave in meters.

D - the peak output power of the transmitter in watts.

E - the minimum useful signal to the receiver in watts.

F - the effective target area in lVMKS units.

This first card must consist of five data fields; each field is ten columns wide. The

data are entered in the floating point mode. In each field, the following must hold:

Column 1 - sign of fraction.

Column 2 - optional zero punch.

Column 3 - the decimal point.

Columns 4-9 - the quantity expressed as a decimal.

Column 10 - the alpha-symbol E.
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Column 11 - the sign of the decimal exponent.

Columns 12-13 - the power-of-ten decimal multiplier.

Data Cards 2 through 27 must contain the value of the antenna pattern stored at inter-

vals of one degree in elevation from +90 degrees to -90 degrees. Starting with the

first card, seven values of the antenna pattern function are stored at one degree incre-

ments starting at plus ninety degrees. The field width of each value of f(O) is ten

columns. The magnitude of f( 0) must be stored as a three digit decimal which must

occupy columns four through six of each field. The remaining columns of each field

are utilized as explained before. Data Card 28 must contain in order of the fields:

Q - the relative dielectric constant of the reflecting surface.

R - the conductivity of the reflecting surface.

GAM - the value 1. 0 if horizontal polarization is being considered and the

value 0. 0 if vertical polarization is being considered.

AZ - the azimuth heading for which the 180 degrees values of f(O) are

stored.

TA - the value +1.0 to test lobe logic at start of run or the value -1.0 if

the test is not desired.

ERD - the value of production block printouts desired per page.

SLZ2US - the slope of the assumed starting lobe as referenced to rectangular

coordinates.

The format of the data is again as a decimal to the desired power of ten in fields ten

columns wide. Data Card 29 has the following information:

GMDO - has the value of -1. 0 if the principal root is to be used in determining

r'. The value +1. 0 utilizes the program as written.

STRAN - the minimum value of R2 allowed in program.

RBCC - a value of - . 5 allows for the grid to hunt over an area in terms of

the propagated wave length equal to one half of a revolution before indi-

cating the end of a lobe. A value greater than - .5 allows less area

and a value less than -.. 5 allows for a greater area.

PRV - allows for monitor printout to be printed with tabulated lobe data.
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Data Card 30 consists of the following five quantities:

G - latitude of reflection point from the north pole.

ZAM - maximum value of Z2 allowed in program.

AIZ - the minimum value of Z 2 allowed in program.

RWHY - the value of 2.0 starts the program over a lobe tracing logic assumed

as the bottom of a lobe. The value of 0.0 assumes the starting point

as the top of a lobe.

EROE - the value of 4 / 3 modifies A as assumed by a linear profile of 17.e

The next six data cards must contain double-precision quantities stored one per card.

They appear in the order of cards as:

AMD - the maximum allowable difference in tan a 1 and tan a 2

relative to 0.

P - the value of Z 1 .

BET - A Z2

DEL -AR2

SRAN - starting R 2 - A R 2 .

SZ2US - starting Z, - 5 xA Z9 "

The format oi these cards is as follows:

Column I - blank.

Column 2 - optional zero punch.

Column 3 - optional decimal point.

Columns 4-20 - sixteen decimal digits.

Column 21 - alpha-symbol E.

Column 22 - the sign of the decimal exponent.

Columns 23-24 - the decimal power of ten.

The statements immediately following statement 15 calculate R0 2R 0 and the radius of

the earth by Equations (30), (129), and (190) respectively. The high order part of all

double-precision data will also be seen to be set equal to zero. Statements 408 to the

end of Section B give a prologue printout of the program parameters on tape and/or

paper.
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Section C consists of pre-setting the lobe-tracing logic.

Starting on page 75, Section D increments Z2 and R2 from their read-in starting

values. R2 is then compared to dh or L as given in Equation (146). If R2 is greater

than dh , Z2 is then compared toZ2min as calculated by Equation (148). After forcing

Z2 to satisfy this condition, program stops and error checks are tested. Optional

printout routines will be noted. It should be noted that in Section D, statements 31 and

32 increment R2 in the proper manner when this section is branched into from later

sections of the program. Z2 is likewise adjusted by statements 39 and 40.

A double-precision calculation of 01 is performed in Section E. Statements 478

minus I through statement 480 give an optional monitor of the critical parameters in-

volved in this calculation.

Section F, covering some one hundred statements through statement 924, serves

to find two values of 0 which may then be used in the straight line approximation to

make a 1 equal a2' Section F starts by finding a value of 0 by the flat earth approxi-

mation. This appears as statements 830 through 831. It should be noted that throughout

this and the previous section, the angles themselves have not been calculated. The sine

and cosine of all angles are used directly. This procedure was used to increase speed

while maintaining the desired accuracy throughout the program.

After having found a value of 0 by the flat earth approximation, control is advanced

some eighty statements to statement 130. Statements 130 through 145 calculate the values

of the tangents of a 1 and a 2 knowing 0. Note that this is essentially a manipulation of

Equations (117) and (118). Having made this calculation, control is transferred back to

statement 832 and through to statement 901. Monitor action will be noted at this point.

If the values of the two tangents are both positive, then a second value of 0 is calculated

by the incremented flat earth approximation or Equation (131) slightly modified. This

may be seen in statements 833 to 833 plus 3 on page 78. The tangents of a 1 and c 2

are then calculated as before and monitor printout will be noted following statement 845.
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At any time during the preceding two approximations should the angles become

such that the tangents of aI or a2 become negative, then the following logic is used.

The section of the reflecting earth which is visible to both the transmitting platform

and the assumed target is first determined. This section is then divided into four equal

sections. Two values of 0 are then derived which causes the reflection point to fall

within two sectors which are not equal. Having two valid sets of data, the straight-line

approximation is then used to find the true reflection point. If the previous method does

not yield points which are valid, then the particular point in space under consideration

is rejected and a point one increment in height is considered. This forcing procedure

is contained in the statements on page 77.

Section G, statements 148 to 421, on pages 78 and 79 calculates the new value

of 0 by the straight-line approximation such that tan C1 equals tan a 2 Optional moni-

toring printout will be noted as statements 481 through 484 plus 1. The validity of the

calculations are again attested to by statements 495 and 936. Statement 937 determines

whether the two tangents are equal to the precision desired. If they are not, the pro-

cedure is repeated start'rig with statement 148; if they are, the program continues.

Statements 130 through 145 of Section F are used in the calculation of the tangents.

Section H on page 79 calculates a1, a 2 , A R, R1 and R3 by Equations (193),

(121) and (122). Optional monitoring is again provided.

The parameters 03' 04' 02' 02' a, r, and 0 are calculated in Section I. The

calculations are straightforward as appearing in this text. The polarization of r is

chosen from a data card.

The divergence factor D is calculated by Equation (145) in Section J.

Section K on page 81 converts A R to its equivalent phase constant by Equation

(192). The operations of Equation (194) are also performed.

Section L reads in from stdred data the values of f( 1) aird f(O 2) and interpolates

between the one degree stored increments.

Section M calculates F by Equation (191), K2 by Equation (195) and IK 2F I by

Equation (198).
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Within Section N are the lobe-extremes detecting criteria. This section covers

branching of the logic at lobe maximums and minimums.

Section 0, starting on page 82 and ending on page 84, contains the lobe tracing

and printout logic for points being considered as nearer the top of a lobe than to the

bottom. This section decides whether the value of Z2 and R2 combined comprise a

valid printout point and if not, to what part of the program control must be transferred.

Z2 and R2 are increased or decreased according to the logical decision. This section

makes use of Equations (199) and (200). Statements 171 to 611 on page 83 predict the

new point on the lobe from previous information of valid printout points.

Section P on pages 84 to 86 is a duplicate of Section 0 for points on the bottom

of a lobe.

The program error stop printouts and formats are contained in Section Q. The

section also contains debugging sequences and the final program stop.

The fact that the Fortran listing is reduced in its print size does not indicate that

it is to be taken for granted. Within its framework lies the answer to the many problem

areas that arise in solving the equations necessary in plotting a theoretical coverage

diagram. Due to a lack of space, the many fine points and problem areas have not been

discussed but may be determined from the Fortran listing by the individual who is faced

with a similar problem. It should be noted that a small digital computer would not con-

tain the storage needed by the logic represented in the previous analysis. The program

tested maintains an overall accuracy of at least three decimal digits when the wave

length of the propagated waves is equal to or greater than one tenth of a meter.
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C, Fortran Listing

DIMENSION A14D(2),P(2),BET(2),DEL(2),AE(2),STI(2),SRAN(2)
DIMENSION ST2(2) ,ARTHO(2),ST3(2),Z2US(2),RAN(2),FRE(2),Cl(2)
DIMENSION Z2M(2 ),BB(2),C2C2),S(2),TM(2),TE(2),CB(2),C3(2)ANG(2)
DIMENSION SI1(2),SI(2),CO(2),Z(2),Th(2),DA(2),TAG1(2)
DIMENSION DB(2) ,TAG2(2) ,FRY(2),RAY(2),AVA(2) ,TRY(2)
DIMENSION CE1M2(2),DLIM2(2),APHO1(2),SLOC(2)
DIMENSION RAIG1(:2),APHO2(2),RAIIG3(2),RPM13(2),A(1

8o),SZ2US(2)
DIMENSION VSANG(2),COANG(2),AEP(2),AEZ(2),SIANG(2)
COMM4ON SLOC
SENSE LIGHT 0
PRINT 98

98 FORMAT(1H1/61H SENSE SWITCH ,1,O,1,O,1**PRESS START AND CONTINU
XE PROGRAM)

PAUSE
IF ACCUMULATOR OVERFLOW 7,7

7 IF QUOTIENT OvFLow 6,6
6 IF DIVIDE CHECK 1,1.
1 READ INPUT TAPE 2,2,H,B,D,E,F

READ INPUT TAPE 2 ,361, (A(J),J=1,180)
READ INPUT TAPE 2,250, Q,R,GAM,AZ,TA,ERD,SLZ2US
READ INPUT TAPE 2,628,GmDo,sTRAN,RBcc,p~v
READ INPUT TAPE 2,4

1 ,G, ZAM,AIZ,RWHY,EROE
READ INPUT TAPE 2,3,AMD(),P(1),BET(l),DEL(l),SMf(l),SZ2US(1)
IF(ZAM)9,9,15

9 READ 2,H,B,D,E,F
2 FORMAT(5E13.6)

READ 361,(A(J),J=1,180)
361 FORI4AT(7E10.3)

READ 250,Q,R,GAM,AZ,TA,ERD,SIZ2US
250 FORMAT(7E10.3)

READ 628,GMDO,STRAN,RBCC ,PIW
623 FORMAT(4EI7.9)

READ 4,G,ZAM,AIZ.RWHY,EROE
4 FORMAT(E12.5,2E17.9,2E1 5)
READ 3,AMD(l), P(l),BET(l), DEL(1), SRAN~l), SZ2US(l)

3 FORMAT(E24.9)
15 c=14.0*3.1i4159265

AB=(1{*B)/C
AC=(D/E)*(F/C)
AD=SQBTF(AC)
RANGE=(SQRTF(AB) )*(SQRTp(AD))
RANGM=2.0*RANGE
A1)=1852.0*(3438.2632-5.778o4*(cosF(2.*G))-0.O1222>*(COSF(4.AG)))

AR (2) 0 .
CALL DPADD(AE,AE,ST1)
CALL DPADD(ST1,P,ST2)
CALL DM'Y(ST2,P,5T1)
CALL DPROOT(ST1,AlTHO)
SAE=AE (i)
AE(1)=AE(1)*EROE
P(2) =0.0
AMD (2)=o.o
BET (2)=O.O
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DEL (2)-O.O
NO-O
SRAN (2)=o.o
SZ2US(2)-O.o
IF(SENSE SWITCH 1)408,409

403 PRINT 401
401 FORMAT(C5511 LOBE PATTERN PROPAGATION TRACE)

PRINT 402,AZ,ARTHO(1),
402 FORNAT(17HOAZIlMHEADING=ElO.3,3OII LINE OF SIGHT OF TRANSMITTER=

XE17.9)
PRINT 407,AE(l),RANGE,RANGM,SZ2US(l)

407 FORMAT(4JIAE=E7.9,7HI RANE=E7.9,7H RANGME17.9,171 STARTING BEIG
XIIT=E17.9)

PRINT 404,H,B,D,E,F
404 FORMAT(1OIIOMAX GAIN=E13.6,131 WAVE LEN0THl=E13.6,1011 PEm PR=El3.6

X,911 MIN SIG=E13.6,1311 TARGET AREA=-E13.6)
PRINT 405,G,ZAM,Q,R

405 FORNAT(24IIOIATiTuDE FROM NTI POLE=E12.5,12H MAX TGT HT=E17.9,191 R
XEL DIEL CONSTANT=E10 .3,1411 CONDUCTIVITY=ElO.3)

PRINT 406,P(l),BET(),DEL(),SRAN(),M(l)
4o6 FORMAT(12HOPLTFORM HT=E17.9,1OH DELT AfLT=ElO.3,10H DELT RAN-E12.5,

x14H STARTING RANE17.9,5H A1MDEO.3/1H1)
409 wRITE OUTPUT TAPE 7,401

WRITE OUTPUT TAPE 7,402,AZ,ARTHO(1)
WRITE OUTPUT TAPE 7,4O7,AE(1),RANfJE,RANGM,Sz2US(1)
WRITE OUTPUT TAPE 7,404,H,B,D,E,F
,IRITE OUTPUT TAPE 7, 40 5,G, ZAM,Q, R
W4RITE OUTPUT TAPE 7,4o6,p(1),BET(),DEL(),SRAN(),AMD(l)
WRITE OUTPrY TAPE 15,401
W.RITE OUTPUT TAPE 15,402,AZ,ARTHO(l)
WRITE OUTPUT TAPE 15, 407, AE (1) , RANGE, RANlGM, SZ2US (1)
wRITE OUTPUT TAPE 15,4o4,H,B,D,E,F
14RITE OUTPUT TAPE 15,405,G,ZAM,Q,R
WRITE OUTPUT TAPE 15, 4o6, P(1) ,BET (1)DEL (1) ,SRA (1), AN~D(1)
*iRITE OUTPUT TPE 15,403

5 CALL DPADD(AE,P,AEP)
CALL DPDIV(AE,AEP,DA)
C2(1)=2.0
C2( 2) =0.0
RED=-30.
KJ=-1
C3 (1) =1.0
C3 (2) =0.0
GAY=0 .0
RAN~ ) =SRAN(1)
RAN(2)=SRAN(2)
DRE=0.O
R13P=0 .0
KC=0
SBCC=0.0
NOS=-1
KLIEM=-1
SSI=-1.0

8 WHY=RWHY



75

C1(1).4.0
Cl(2)-.Oo
CALL DRPY( Cl,nT,sT1)
CALL DPAMI(qT1,8Z2US,Z2U8)
GO TO 30

29 CALL DBUD(Z2W,BZT,Z2WS)
30 IF(WHY-YEW)31,31,32
31 CALL DPSUB(RAN,DEL,RAN)

Go To 625
32 CALL DPADD(RAN,EEL,RAN)

625 17 RAN(1) -ShUN ) r,33 3
33 Ir RAN(1) -RABIN 3,a
314 17 (RAN-ARTH0) 35 ,10,36
10 17 (RN(2)-ARTK0(2)) 35,35,36

GO TO 37
36 CALL DpBUB (RAI,ARTHO MB)

CALL DRMl'! (A,,SflS
CALL DBEY(fl,T2)
CALL DPADD(8T1,sT2,ST3)
CALL DPR0OT(ST3,Bfl)
CALL DPBU(ST1,AZZ24)

37 BCC-8
FRED. MUS (1)
FRED(2).Z2WS(2)
NRC.-200
AICA-0 .0

SNELIGHT 1
GO TO 39

38 SEW5 LIGHT 0
39 CALL DPADD(Z2U,BlT,Z2US)

GO TO 51.0
1.0 CALL DPSUB(Z2S,BKT,Z2US)

54.o ir (z2s-za4) 460,5141,142
5141 IF (Z2wS(2)-Z24(2)) 4.60,142,142

1.62 17(515 SWITCH 3)1.63,4.61

6114 FCWMT(5HOz2(-zl7.9,6H Z2US-317.9,51 RAN4117.9)
.614 wRIt WIM" TAPE 7,6114,z2K((),z2u5(l),RAN(1)

GO TO 39
141 i(Nm SWITCH 1)1.65,1.66

1465 PRINT 615,RAN(l)
615 FC3JAAT(J./5H RAN-117.9, 351 RAN IS 0RKAM THAN MAX RABN STOP)
1466 H~in! OUTPUT TAPE 7,615,RAN(l)

GO TO 156
142 17 zM(1)-zA)543 5143 143
143 Ir515 SWITCH1)9,

467 PRINT~ 616,z2w(l)
616 FONHA(1E/6H Z2U.317 .9,37H Z2US Is 011A MHAN MAX TOT HT STOP)
4.68 wRiTs OWn7U TAPE 7,616,z2us(1)
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GO TO 750
543 CONTINUA-
C 1CBTEA)(()*-Z1-()*2/(ZZ1)A+()-B
118 CALL DPSUB(P,Z2UBST1)

CALL DPiPY(ST1,5T1,ST1)
CALL DR4PY(RAN,RAN,ST2)
CALL DPBUB(5T2,ST3,ST.)
CALL DPADD(AR,Z2US,AZZ)
CALL D~l4P (AZZ,C2,ST2)
CALL DNPY(5T2,AZP,ST2)
CALL DPDIV(ST1,ST2,VB~M)

C COS (THETA (1) )u-VaRD-COAjw
CALL DPSU(C3,VSAG,coAx)

C SI T3Al-QT(-0N*2.QT 1CAG JCA,
CALL DPADD(c3,COA]M,ST1)
CALL D(FY(VSAM,ST1,ST1)
CALL DPROOT(ST1,SLAW~)
ANG=ATAN(SIAIU/COANO)

C DB=Ag/(AEZ2UZ~S)
CALL DPDIV(AE,AEZ,EB)
IF(SXNSE SWITCH 6)4T7,478

478 IF(sENSE SWITCH 5)479,4.8o
479 PRfIT 6qRNl,2SlN~)Ai2
619 FORMAT(5ON.AN..E17.9,6H Z2us.117.9,5H ANG-117.9,6s ANOM.17.9)
4.80 WRIE OUTPUT TAPE 7, 619,RAz(l) ,Z2US(l),Ah(l.) ,ANG2(l)
477 SENSE LIGHT 3

IND-1
I7(B81)830,836,836

836 ASSIGN 832 TO K
GO TO 130

830 GA.(P (1).z2us(1)),/Rwf(1)
GIB-ATAIIF(OIA)
GEC-1.- 57079632-On
GED-Z2US (1 )/GZC

C SI(l)-GED/AE(l) SIN(THRTA)..THMTA

SI(2)=O .0
831 ASSIGN 832 TO K

GO TO 130
832 ASSIGN 147 TO K

IF(SENSE LIGHT 3)835,845
835 FRY(1)TRY(l)

FRY (2) --MY (2)
I7(511153 SWITCH 6)501,902

902 I7(511153 SWITCH 5)903,904
903 PRINT 632,TA1(1),TG2(l),,RY(l)
632 FOSMAT( 52H0*W******FIAT EARTH APPEmcD1A~ioN* ---- ------ *, 6H

XTAG1.E17.9,6H TA02.E17.9,5H FRY.E17.9) ......

904 WRITE T~nVT TAPE 7, 632,TAG1 (1), TAG2(1), FRY(1)
WRIE OUlTPUT TAPE 7, 6 31,si(1),sTI1(1),co(),Z(1),ZB(l)

901 IF(TAG1)920,92o,92,.
921 I7(TA2)920,920,923
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C IF TANGM NEGATNIVE
920 IF(IND)927,925,925

c SI(A)SiAGCOA-A)SNAGRYCOAG
927 CALL DB(FY (SIA1,AE,ST1)

CALL DRPY (CA1,ARTHO,ST2)
CALL DPBU(ST1,5T2,ST1)

C IF ARP LINE OF SIGHT OVERSHOOT OF TABGI*l***************
I'(ST.1)91.,91.o,941

9140 SI-..
SI(2)-.Oo
SI1=O .0
sIl(i)-.O.
CO-1.O
CO(2)-O.O
GO To 9142

9141 CALL DPDIV(ST1,AEP,SI)
c COS (RAY)-COS (AzG)COs(AM'-AY) I(A)SIN(ANo-p..Y)

CALL DFHPY(COANG,AZ,ST1)
CALL DIFiPY(SIA1I3,ARTH0,ST2)
CALL DPADD(ST1,ST2,ST1)
CAPP DPDIV(5T1,AZP,CO)

C AVA-SIN(Y)/3.
c -((SORT(Z2US(2.*AZ+z2wS))wco-SI*Az)/(Au+z2uS)*3.
C IF TOT LINK OF SIGHT OVERSHOOT OF ARl
942 CALL DPADD(AEZ,AZ,STl)

CALL D~PM(ST1,Z2U5,ST1)
CALL DPROOT(ST1,ST1)
CALL DPDIV(Sfl,AZz,ST1)
IF(ST1-sLAJ)945,943,944

943 IF(ST1(2)-SIANG(2))945,44,944
944 sT1.siA1

ST1(2)= SIANM(2)
ST2=COANG
ST2(2).COANJ(2)
GO TO 94.6

945 CALL DPDIV(AE,AEZ,ST2)
9146 CALL D~Y(ST1,CO,STI)

CALL DPNFY(ST2,SI,ST2)
CALL DPSUB(ST1,ST2,ST1)

C SINE OF THE DIFFERENCE DIVIDE By 3.0********+*---
AVA=ST1/3.
AVA( 2) -0.0
SENSE LIGHT 3
IF(AVA)925,925,928

C SI-SI+AVA
928 CALL DPADD(SI,AVA,SI)

IND-IND+1
GO TO 831

925 PRINT 930,RAN(l),Z2US(l)
930 FOMAT(36HCUnABIZ TOFIND REFIZCTION POINT RAN.117 .9,61 Z2U.117.9)
933 WRIE OuffPL7T TAPE 7,930,RAN(l),Z2U5(l)

GO TO 38
923 SI1(1)SI(1
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511 (2).SI( 2)
102(D) 929,928,M2

929 IF17( %9)3,834,834
8314 S1(1 .sBn ()/looo.)+.sn(1)

81(2) -(Sn1 (2)/100.) 411(2
GO TO 831

833 ozr-Ax*((1.O/P)+(1.0/zaua))
SI(l).(TRY(1)/(1000.o'okF) )4n(1)

GO TO 831
81.5 iF(s118 owi1=C 6)81.6,907
907 tF(Mm SWITCH 5)908,909
908 PRMlT 630,TAG1(1),TAG2(l),FR7(l)
630 FCMAT( 5290*******nM M FLAT AmT APP~xATioN*HHI4****,6H

XTAGl1417.9,6H TAG2B1l7.9,5H FRY4.17.9)-----
PRINT 631,sz(1),sni(1),co(1),z(1),DB(1)

631 FcSMAT(14H 51417.9,5H Sfl-2179,4H C04317.9,3H Z.'127.9,1.H Z17.l9 X)
909 WRITh Q7UW1M TAPS 7,63O,TAG1(1),TAG2(l),PET(l)

WRITE OUTrPUT TANS 7,631,si(1),sfl(l),co(l),z(1),ZB(l)
81.6 iF(TAG1)92Q,92,924
9214 31(TAG2)920,920,148

C C0wBq~T(1-sI**2)
130 CALL DReY(SI,SI,ST1)

CALL DPt1B(C3,ST1,ST1)
CAL.L DPROOIT(ST1,CO)

C ZB-SIAMCO-SI*C0AND
CALL DPA! (SIANG,C0,sM)
CALL DPM (SI,COANG,BT2)
CALL DISUBT1,5T2,ZB)

c Z.CO*COAN348I*SIA33
CALL DR(Vf(CO,COANG,ST1)
CALL DPNF!(SI,SIAKM,ST2)

C CL PD(iSTz)TA01-zB/(Z- (Az/(Au+P)))
CALL DPSUB(Z,D)A,8T1)

C CL PV(BBTG TAG2-SI/(CO-(AE/(AZ+Z2US)))
CALL DPSUB(CO,DB,BT1)
CALL DIVIV(SI,ST1,TAG2)
NRC=NRC+l
IF (18C)1145,1145,163

1145 CALL DPSUB(TAG1,TAG2,TRY)
GO TO x, (1147,832)

14+7 CONTIJIU
C AVA=TRY*( (SI-sIl )/(FRY-TEY))
C CALCULATE NEW BI
14.8 CALL DPSU(SI,8I1,CE1M)

CALL DPSUB(FRY,TRY,DIM2)
CALL DPDIV(cE]J42,DL1M2,ST1)
CALL DPjEPYQIH!,ST1,AVA)
ST1-AM1*SI
811-SI
sI1(2)-SI(2)
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CALL DPADD(AVA,5I SI)
4.81 i1(s115 swITCH 61495,1482
482 i1(shi SWITCH 5)1483 4814

620 YFI4AT(14106417.9,5H Sfl-3179,48 co.117.9,3H1 Z.317.9,14l UB-17.9 X)
PRN 62i,itAY1 ,AVA(),FRY(l),AG1(1)

621 FCUNAT(68 Rky1-Z27.9,5H AVA.117.9,53 J'Byw1l7.9 6s TAGl-Z17.9)
4314 WRITE OUTPUTl TAPE 7,620,SI(1),BSfl(1),C0(l),Z(1,zB(1)

WRITE OUTP TAPS 7,621,RAY1 ,AVA(l),FRY(l),TAG1M1
GO TO 495

1495 Ir (T01 )920,920, 936
936 IFR(AG2)92o,920,937
937 IF (ABSF (AVA) - STi) 151,151,130

c COs (APR01 ).i o/SQT(1.0+TAG1**2.)-T**- -
151 CALL DFNPY (TAG1,TAD1,sT1)

CALL DPADD(STl,C3,ST2)
CALL DPROOT(ST2,8T1)
CALL DPDIV(C3,ST1,ST1)

C COS (AP!1o2).1.0/sW~(1.0+TAo2**2. )-ST3--------
CALL DIM4PY(TAG2,TAG2,ST2)
CALL DPADD(ST2,C3,ST2)
CALL DPROOT(8T2,ST2)
CALL DPDrV(C3,8T2,ST3)

C RA3)1.A1(((ZV1.O)+(P*Z)/A1)/COB(APEo1))-------
CALL DPNPY(z,P,ST2)
CALL DPDIV(ST2,AZ,ST2)
CALL DPSUB(Z,C3,5T4)
CALL DPADD(sT14,ST2,ST2)
CALL DFDIV(ST2,5T1,5T2)
CALL DP3OT(ST2,AI,RANG1)

C RAN3-A3((COS (RAY) -1. 0) +(Z2tC0S (RAY)) /AE)/ICOS(APH02))***********HHI*
CALL DPMT(ZUS,CO, 5'I2)
CALL DPDIV(5T2,AI,8T2)
CALL DPOTM(cO,C3,T4)
CALL DPADD(ST2,8T4,ST2)
CALL DPDIV(OT2,8T3,5T2)
CALL DFIG'!(ST2,Al,RAIM3)

C RANG13-RANm1+RAME33RA:::------------------------
CALL DPAW(RA33G1,RAX3,T4)
CALL DPSU (sT4,RAN,RA1m13)
APHO.ATAIF( (TAa1+T!AG2)/2.O)
APEO1.ATANP(TAO1)
APEO2=ATANF(TAG2)
PHS.RANG13/B
I1(511181 SWITCH 2)485,1486

1486 IF(==N8 SWITCH 5)1487,1488
487 PRIT 622,TA01(1),APfol(1),TAG2(l),APno2(l)
622 FoRmAT(6E0TA0141l7.9,7H APHO1=117.9,21H TAG2.117-9,

X71 APHO2-E17.9)
1433 WRITE 0uT7PLYT TAPE 7,622,TAG1(1),APHo1(1),TArG2(l),APHO2(1)
1485 ATA-3 14159265-APRO
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SSI.+1.O
S12-1. 57079632-APHO
RAYI.ATAN(Sfl/CO)
S13-3. 14159265-ATA-RAYI
51T4-3 .14159265-ATA- (AM (1-RAY1)
SA=(RANG1(1)+RANG3(1)+RAI(l) )/2.O

SC-SA*(sA-RAG3(l))
SQAC.SQRTF(SB/SC)
TATA2-- (1. 57O79632-si4)
TATA1=2.O*(ATANF(SQAC) )-ABSF(TATA2)
BR6.6o . oB*R
C2APHO.COF(SI2)WC06F(S12)
GA-Q-C2APHO
GB.-ADSF(BR6)
GC- (GA*GA)+(GB*GB)
GD=SQR'(UC)
BA2.AN1(GB/GA)
BETA1-BETA2/2.0
GDR.SqT(GD)
CBETA1-CO6P(RETA1)

GE-CME'TA1*GDR
GF-SBETA1*GDR
DZ-O. 5

C CURVE AND FLAT EART DIFF.(RAII**2)/2.NSAX RAME~..HA*CS(TATA1.)
SUZ2US. (RA**2)/(2.*SAE)
PZ2US-Z2AiS-UZ2.
IF(GAN-DZ)152 152,153

152 GG=Q*INF(SI2S
GH.-BR6*sInw(S12)
GI-GG-GR
OJuGH-GY
GK-,GG.GR
GL.GH+GF
GM(GPGI)+(GJ*'GJ)
GN-SQRTF(GM)
BETA3.ATANF(GJ/GI)
GO- (GIC;K) +(GL*GL)
GP-SCJTF(GO)
BLPTAJ+.ATANF(GL/GC)
GQ-GN/GPr
GR.BEA3-mzTA4
GOMRGMO*(GQ*COSF(GR))
GMVI-GQ4SINF(GR)
GO TO 155

153 GS.SfI(SI2)-GE
GT--GF
GU-5fIF(SI2)+GE
GV-(GS*GS)+(OTNGT)
GW-SQFTF(GV)
BETA5.ATANF(GT/GS)
BETA6=ATANW(GF/Gu)
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GX.(GU*soU)+(GM~F)
GY-SQRTF(OX)
0Z.,G W/GY
HA=BET5-BLPTA6
GMHDO* (GZ*COSF(HA))
ONHaI-GZ*8InW(HA)

155 HBfl.8flI(APHO)*cO6F(APHO)
HC.SqRTF(B)

HE-AM(1)*HD*nc

HIi (Az (1)+z2US (1) )*RAM1 (1)*cosF(s13)

HK-HJ+HI

3(=STF(HL)
DE.Z/HM
DELT.(RAIM13 (1)/B )*6.28318530
DEL74M0MDF(DELT, 6.28318530)

CSD.COBF(DELTi4)
SND-SniF(DELTh)
DZ.O.50
IF(GAN-DZ)3149, 349,350

349 014 -OMYB
GMI.GMVI
GO TO 352

350 GNH.GHH
GHI-GNKI

352 FB-Gf4*CSD
PC-G(E*SND
PD.0MI*CSD
PE.OMI*SND
PF=PB+PE
1G-D-PC K
AITA2-- ((TATA2*57. 2957795)..90.O)
AITAl-- ((TATA1*57. 2957795)-90.O)
J-XniMi(AITA2)
ALaI2.-A(J)
J-J+1
FLOA2-FLOATF (J)
ALO21.-A(JT)
J-XITF (A=iAl)
ALOT1-A(J)
J=J+1
FLOA1.FLaC7F(J)
ALOTll1.A(J)
ADDA2- (ALOT21-A10'2 )* (FLDA2-ArrA2)/. .0
ADDA1.(ALDrll-ALOI=1)*(FLOA1.AITA1)/1 .0
FOT1.sALO11-ADDA1
FO1r2-ALO1r21-ADDA2 L
PRsJ0r2*D3*PF
PI.FOT2*r3*PO
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FOE1FM1+Rl~f
F0E2.PI
FOE- (rcal.Fa1). (FOZ2*7OE2)
nLD.SQuT?(FOR)
AYK2-( (o0.5)*RAzNM) /RAN (1)
SPAR.PAR1
PAY1*AYX2*flLD1
PWR1 -PAY1*PAY1*PAY1*PAY1
IF(TA)115,115, 44

44 IF(WHY-YHW)68,68,69 J
69 IF(XC-2)68,68,70
70 3:(NR-1O)71,115,115
71 IF (sm~-miR)68,68,175
6,,3 IF(BCC-(PHS+RBCC))175,175,115 N

175 KJ=0O
iF(*WHy-YHw)47, 47,46

46 IF(RAM13-Rl3P)160,16o,48
48 R13P-RAN13

GO TO 75
47 KC.0

SBCC-WBC+1.O
GO TO 50

115 IF(WHY-YHW)51,51,76
50 WHY=2.O

CALL DPADD (RAN, DEL,RAN)
Z2US (l).nRZn+BT- (FZ2TS*2.4
iF(sENsE SWITCH 1)475,474

474 IF(SENSE SWITCH 5)29,476
475 PRINT 618,RA(l),z2US(l),FRED(l),WHY,NRC
618 FORMA2r(1H0OBE CHANGE EXIT 4 RANE17.9,6H Z2US=E17.9,6H FE

XED=E17.9,5H WHY=EO.3,5H NRC-13)
476 WRITE OUTPUT TP 7, 618,RAN(1) ,Z2US(l) ,FRD(l) ,WHY,NRC

GO TO 29

60 IF(BET(1)-AKA)64,444,444
444 KC-KC+1

IF(SENSE SWITCH 4)101,102
102 IF(SENSE SWITCH 5)103,104
103 PRfINT 11O,BJR1,RAN(l) ,Z2US(l),PHS,DE,GM41,GMI,FOT1,F0T2,NRC, fIND
110 FORMAT(17HOEXIT 10 10 FvWR-E9.2,5H RAN-3PF18.3,4H Z20OP710.3,5H PH

XS.F8.2,4H DE-F4.2,4H GI4-2F6.3,5H Far=2F5.2,5H NRC=13,5H IND=12)
104 WRITE OUTPU TAPE 7, 11O,NwRl,RAN(1) ,Z2US (1),PHS,DE,GNR,G14I,FOT1,FO

XT2,NRC, IND
GO TO 40

101 IF(SENSE SWITCH 2)4o,447
447 WRITE OUTPUT TAPE 7,610
610 FORMAT(11HOEXIT 10 10)

* IF(SENSE SWITCH 3)446,449
446 r~.o

PRINT 610
GO To 448

64 TA=1.o
IF(NOS)84,84,85
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814 SBcc.Urr(P85)
N06.1

85 NO.NO+1
KC.0
ir(suiz SWITCH 1)1450,1451

45o PRINT 6o6,No, N~l,RAN(l) ,z2us(1),PZ2us,pFHs
DRE.DPB+1 .0
iY(Dm-zRD)1451,86o,86O

86o PRINT 607
180 DRZ-0.O
1451 WRITE OUTPUTf TAPE 15,14i0,No,NdR1,RAN(),Z2U8(l).PZ2W,PHS

IP(SENSE SWITCH 2)16,17
16 iF(s sw =WITH 4)18,19
18 3Ff(PRV)19,22,22
17 WRITE Oa7IP~f TAPE 7,6o6,N,R1,RAN(l),Z2ES(l),fl2US

WITE OUTPUTP TAPE 7,602,RAIS31(1) ,RAN3 (1) ,PA13(1) ,PH, C, IND
WRITE OU7TPUT TAPE 7,603,FT1,TATA1,FT,TATA2,FOAe,FLOA2
WRITE OU'TPUT7 TAPE 7,6014,DE,Om,GNI,SI2,S13,114
GO TO 22

19 WRITE OUTIPU7T TAPE 7,23,NQ,TAG1(1) ,APHo1(1) ,FO1,70T2,DE,GW,GNI,NR
XC,IND

23 FoRmAT(14H NO-16,6H TA1.E1O.3,7H APH1-81.3,6H FoT1-E10.3,61 FOT2
X.E1O .3,4a DE.F14.2,5H G.F6.14,51 oMI.F6.14,5n XRC-13,51 IND=12)

22 IF(KJT)171,,172,173
171 SFZ2US-Z2IJS

KJ-1
ZUS-Z2US4SLZ2US

167 RED.RED+1.O
IF (ZD-RD)31, 611, 611

173 7Z2US=Z2UIS-SFZ2JS
SPZ2US-Z2US
Z2tUS-Z2US+FZ2US
GO TO 167

172 SFZ2US-Z2UlS
Z2US-Z2US-FZ2US
KJ-1
GO TO 167

611 WRITE OUTPUTi TAlE 15,607
WRITE OUTlPUT TAPE 15,1.03

4.03 FORMAT(12E PRINT NO.,20H RELATIVE POWER,17H RANGE IN K
XM,22H HEIGHT IN mETERs,21H PWITDR3 EMIHT,21.N 1401X
XLO PHASE SHIFI/flIO)

RED-30 .0
GO TO 31

61 McK-1 .0+BT(1)
65 F(EIt: LIGHT 1)66,67
66 nRE.z2us
67 KC=KC+l

n(SEMz SWITCH 4)27,28
28 I'(susz SWITCH 5)52,53
52 PRINT 58,PWR1,RAN(1) ,Z2US(1 ) PHS,DE,Gi,14,FOT1,FOI2,NRC,IND
58 FORMAT(17HEXIT 11 11 PWR1-E9.2,5H RAN.-3P78.3,IH Z2PP1O.3,5H PH

XS.F8.2,4E DE=F4.2,1.H Gm.2F6.3,51 FOT.-2F5.2,5H NRC-13,5H IND.12)
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53 WRITE OUTPUTI TAPE 7, 58,NWR1)RAE(l) ,Z2U8(1) , PSDE,0ZQi4I,FoTl,FOT
X2, NRC, ID
00 TO 38

27 I(szMs SWITCH 2)38.1455
455 WRITE OVIPVT TAPE 7,612
612 FOi4AT(11HMIT 11 1-1)

V(SIM SWITCH 3)1454,1457
14514 PT.1.0

PRINT 612
00 To 456

75 WHYmO.O
CALL DPSUB(RAN, DEL,RAN)
Z2USL.Z2US (1)
Z2US.FRED+BET- (1'Z2uS*2.)
rF(szNsE SWITCH 1)1472,1473

472 PRINT'i 617,RAN(1),Z2USL,FRE(1),WHY,NRC,Z2U5(1)
617 FORMAT(31HoOBE CUM1~ EXIT 114 RANuB12. 4,7H z2usL.Z12.14,6H F

XRED-E12.14, 5f WHY..E9.2,5H NRC.13,6H Z2US-ME2.14)
473 WRITE OUTPUT TAPE 7,617,RAN(l), Z2USL,KMD (1), WHY, NBC, Z2US (1)

GO To 30
76 IF(PWR1-1.o)78,79,79
78 r:F(BET(1)-AKA)81,92,92
79 IF(KLINM)87,87,86'
87 KC=O

L:F(z2uS(1)+(-BET-AIZ-za() )82,80,80
80 AKA=1.0+BET(1)

KC-KC+1
Ia(SENS SWITCH 4)105,106

106 ILF(sENSE SWITCH 5)107,108
107 PRINT 111, PWR1, RAN(1), z2us (1), PHs, DE, GiR, GmI, Fol, Fan2,RC, DD
111 FORM4AT(14H~XIT 10 PWRl-39.2,5H RAN.-3PF8.3,4H Z2.OPF1O.3,5H PHS-F

XB.2,14H DE.F4.2,14H Gx=2F6.3,5H FOT-2F5.2,5H NURC13,5H IND=12)
108 WRITE oirriL~r TAPE 7, ill,NPR1,RAN(l), Z2US (1), FES, DE,GNR ,G141,FOT1,FO

XT2,NRC,ID
Go To 40

105 IF(SENSE SWITCH 2)140,421
421 LF(SENSE SWITCH 3)1422,1423
422 PRINT 601

PT=-i .0
601 FORMAT(8H0EXIT 10)
1448 PRIT 605,Rfi,RAN(l),Z2US(l)
605 FORMAT(6H PwR1l.El7.9,6H RAN-E17.9,6H Z2IJS=E17.9)

PRINT 602,RAW1(1),RAI3(1) ,RAiM13(1) ,PH,NRtC, DI
602 FORMAT(7H RAm1.317.9,8H RAM33=E7.9,9E RANG123-.K17.9,5H PES-78.2

X,5H NRC=13,5H InM-12)
PRiwT 6o3,FOT1,TATA1,F0T2,TATA2,FWOA1,FI.0A2

603 FoRmAT(6H FOT1-212.5,7H TATA1.317.9,6H F0T2-El2.5,7H TATA2-E17.9.6
XH J(a)-ElO.3,6H J(2)-Zlo.3)

PRINT 6o4,DE,GR,GMI,SI2,SI3,si14
60o4 FORKAT(14H DE.E17.9,5H GMR.E12.5,5H GNI-E12.5,5H S12-El6.8,5H S13-E

x16.8,5K sI14.El6.8)
420 IF(PT)423,423,449
423 WRITE OUTPUTI TAPE 7,601
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44I9 WITE 0Oii'wr TAPE 7,605,SMA1,R A,2US(l)
WRnI WPPW TAPE 7,602,RAEI(l) ,RAMG3(l),RAM13(),P,3C, fIND
WITE WITP? TAPE 7, 6O3,FOTl,TATA1,FOT2,TA1A2 FMU YWA2
WRITE WRYUT TAPS 7,6o4,DZ,0aM,a,8I2,SI3,SI
Go To 110

81 IF(SBCC-(PuB+0.5))83,86,86
86 zeJ-,mz2usB+DT

KLE(.1
00 TO 514o

83 TA-l.a
NOwNOdl
1cLmZ--l
KC-0

82 IF(sz SWITCH 1)1430,431
430 PRfINT 606,No,NwR1,RAN(l) ,z2us(l) ,Pz2I,~
6o6 FoiwT(1no16,16x RuLAmiV POASR-117.9.8H RANJI--3PY8.2,11H xx HIi

XGNP-OPF8.2,9H X P=O-F8.2,15H X PUAS sEIPFi.l3.7)
fSE-IRE+1.O
I7(DRfD)431, 459,459

459 PRINIT 6o7
607 FnhNAT(1N1)
181 DRE-O.O
431 WRITE OUTPUT? TAPE 15,41o,No,PwR1,RAN(l),z2us(l),fla3B,PNs
41o FORMA(IO,24.9,-3W13.2,OPF2.2,F21.2,P25.7)

IF(sU SWITCH 2)20,21
20 IF(sZS SWITCH 4)24,25
24 3IF(PRV)25,26,26
21 WRITrE WDTPW! TAPE 7,6o6 INO,NWR1,RAN(l),Z2hE(1),PZ2US

WRITEz WIMP"I TAPE 7,602,RAIM1(1),RA3(),RA13(),,RC, D
WRITE CXJPU TAPE 7, 603,FOT1,TATA1,FOT,TATA2,FLOAI,FLOA2
WRITE OUTPUTP TAPE 7,6o4,DE,OaS,OI,812,sI3,BI4
Go To 26

25 WRITE OUPUTl TAPE 7, 23,NO,TAG1(1 ),APso1(l) ,PT1,FOT2,DE,GIO,GNKI,NIR
XC,fIND

26 iF(Kj)168,169,17o
168 sfl2us-z2us

KJ-1
166 REDmRED..o

IF(RED-ERD )32,608,608
170 nZ2U-Z2W-Sfl2mB

sFz2hB-ZaJ
Z2W-Z2WS+fl2
GO TO 166

169 SPZ2UW-Z2UW
Z2UB-Z2wS-FZ2UM

Go To 166
6o8 WRITE OUTPUT7 TAPE 15,607

WRITE OUTPUTI TAPE 15,1403
RED-30.0
GO TO 32

92 KLID'!-1
IF(sSE LIGHT 1)93,94
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93 FRED=Z2US
94 KC-iCC+1

IF5I1ISE SWITCH 454,55
55 I SEMSWITCH 5)56,57

*56 PRINT 59 PWR1,RA1(l),Z2U5(l) ,P,DZ,aM,Gaa,oT1,FOT2,mRCIND1
59 FORMAT(1f4HZIT 11 PWRl.,39.2,5H RAN--3P7P8.3,i.I Z2u01F10.3,5NH PH.F

x8.2,4H DE.F4.2148 Gl.2F6.3,5E FOT.275.2,5N NRCs13,5H IND.12)
57 WRITE OUTPUT TAPE 7,59, NR1,RAN(l), Z2US(l) ,P,D,G,GI,FT1,FOT

X2, NRC, IND
GO TO 38

54 nIF(s~ SWITCH 2)38,458
458 F(SENS SWITCH 3)432,433
432 PRINT 609

PT--l.O
6o9 FoRmAT(8HoRxiT 11)
456 PRINT~ 605,NwR1,RAN(l),Z2US(1)

PRINT 602,RANG1(1) ,RANG3(),RAM1f3(l),PS,NRC, fIN
PRfINT 603,FoT1,TATA1,pY12,TAT2, FLOA1,FI4DA2
PRINT 604,DE,GMR,GKI,SI2, 313,s14
F(FT)433,433, 457

433 WRITE OUTPUT TAPE 7,609
457 WRITE OUPU TAPE 7,6O5,PwRl,RAN(1),Z2US(1)

WRITE OUTPUT! TAPE 7,602,RAN]1(1) ,RA1M3(1),RAZIG13(l), HSNRCIND
WRITE OUTPUT TAPE 7, 603,FOT,TATA1,0T2TATA2 FLOA1 FLOA2
WRITE OUTPUT TAPE 7, 6o4,Dz,Gwu,oNi, SI2,SI3,S 14
GO TO 38

16o PRNT 184
WRITE OUTPUT~ TAPEA 7,184

184 FORMAT (1Eu/13H LOWER RANG13)
ASSIGN 75 TO Ki

161 P~RINT 183,RAN(1),z2US(l),RANG13(l),R13P
WRITE OUTPUT TAPE 7,183,RAN(1),Z2US(1),RA1M13(l),R13P

183 FORMAT (5H RAN-. E17.9,6H Z2tJS. 917.9,8H RAiW13- 117.9,6H R13P.E1
17.9 /IHO/53** -..-**-**-----5D(UIAZD PROGRAM STOP****-*****,
2/40HO013ROGRAMED PDUMP NOWd GOon ONi COIKMIY/nO/iHO)

lo-XL0CF(SLOC)-99
CALL PDUMP(sLOC(L),SLOC(1),3)
PRlIT 185
WRITE OUTPUT TAPE 7,185
END FILE 7
END FILE 15

185 FORMAT (91HOPRoGRAwED PDUMP COMIETEW*****EXIT CALIZD***HHHH**
J.END OF PROGRAM**********FfED LWELL)

CALL EXIT
162 PAUSE

GO TO Ki, (75,145)
163 PRINT 182

WRITE OUTPUT TAPE 7,182
182 FORMAT (1111/261 200 ANGizS WITHOUT OUTPUT)

NRC- 200
AssiGN 145 TO K1

156 GO TO 161
624 FORMAT(1H1/29H END OF PROGRAM F LOWELL RAN.E17.9,6H Z2Us=117.9)
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T0PRIMr 62'4,RAN(l),Z2U5(l)

MN FILE 15
CALL EXIT
ENID(,1,OO,101,O,,,,,,,O)
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750 PRINT 62I4,RAN(3),Z2US(l)

S END FIIE 157
END ME 15
CALL EXIT
END (1,1,0,0,1,0,0o,0,,0,0, 0,0,0) U
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CHAPTER VII

CONCLUSION

A method for a rigorous theoretical analysis of the pattern of coverage of trans-

mitting equipment in the earth' s atmosphere requires equations which are cumbersome

to solve. The formulation of A R by the transcendental approach of the author yields

results which may be sought to a high degree of accuracy with a minimum of work. The

overall concepts of reflection, divergence, and the index of refraction of the atmosphere

may be taken into account. The analysis has been shown to be only feasibly solved by

a digital computer.

Further work should be directed to one of two areas. The first is that of obtaining

an index of refraction other than that which yields the 4/3 earth. It appears that no

constant value can be assumed throughout the region of entire space. Any variances

from the standard 4 / 3 earth noticeably causes deviation in any pattern of coverage. The

second is through the utilization of a normalizing procedure of the equations. This

would noticeably reduce the work required in performing the calculations.



91

ACKNOWLEDGMENT

The author wishes to acknowledge his appreciation to several staff members of

The MITRE Corporation: namely, James H. Bunting for his support in helping the

author analyze many of the problem areas associated with the computer program,

Charles V. McCarthy for obtaining the original double-precision subroutines from the

Massachusetts Institute of Technology and linking them to a working program, and

Anna E. Zaitz for her assistance in compiling this paper. The author also extends his

appreciation to William J. Canty and Robert C. Labonte for enabling the author to use

the facilities of The MITRE Corporation in preparing this paper.

Appreciation is expressed to Russell H. Krackhardt of Worcester Polytechnic

Institute for his patience shown as major advisor(in the academic year ending 1961).

Further, this work would not have been possible without the aid of the Department

of the Air Force under Contract Number AF33(600)39852 to The MITRE Corporation.



93

BIBLIOGRAPHY

Burrows, C.R., and S. S. Atwood, Radio Wave Propagation, Academic Press,

New York, 1949.

Curtz, T. B., and M. L. Barasch, et al, "Analysis of Padar and Its Modifications -
Final Report," No. 2476-1-F, University of Michigan, April 1956.

Fishback, W. T., "Simplified Methods of Field Intensity Calculations in the
Interference Region," Report No. 441, Radiation Laboratory, December 1943.

Kerr, D. E., Propagation of Short Radio Waves, Radiation Laboratory Series,
Vol. 13, McGraw-Hill, New York, 1951.

"Padar Investigation - Final Report," No. 64R-10, Guided Missiles

Division, Fairchild Engine and Airplane Corporation, June 1956.

Ramo, S., and J. R. Whinnery, Fields and Waves in Modern Radio, 2nd ed., John

Wiley and Sons, New York, 1953.

Ridenour, L. N., Radar System Engineering, Radiation Laboratory Series, Vol. 1,
McGraw-Hill, New York, 1947.

Schelkunoff, S.A., Electromagnetic Waves, Van Nostrand, New York, 1943.

Stratton, J.A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

van der Pol, B., and H. Bremmer, "Further Note on the Propagation of Radio

Waves Over a Finitely Conducting Spherical Earth," Phil. Mag., Vol. 27, No. 182,
March 1939.



APPENDICES



APPENDIX A

The following two graphs should supplement Chapter III and

Chapter V of this report. Figure A-1 shows the dependence of A R in

seconds aE a function of the range R 2 . The transmitter and target

heights are maintained at constant values. Figure A-i was obtained by

the exact equations.

Figure A-2 shows the dependence of A R, as a funCtion of R2

on the method used for calculation. The exact and cubic formulations of

A R are compared. All calculations of this appendix were made by N. I.

Durlach, A. M. Carpenter, and M.A. Herlin of Group 45 at Lincoln

Laboratory.

A-i
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Figure A-i

AR in jiseconds as a function of R2 as calculated by the exact expressions for
a standard and 4/3 earth. The height of the transmitter is 40,000 feet and the
height of the receiver or target is 60,000 feet.
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Figure A-2

A R in jseconds as a function of R2 as calculated for a 4/3 earth by the

exact equations and the equations represented in the section of the cubic
r1. The height of the transmitter is 20,000 feet and the height of the tar-
get or receiver is 60,000 feet.
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APPENDIX B

The following figure and tables were obtained by assuming typical radar param-

eters as follow. The maximum gain of the antenna is 251, the wave length of the

propagated waves is 0. 705 meters, the peak power output of the transmitter is 2 x 106

watts, the minimum useful signal is 4 x 10 - 15 watts, the target at Z2 has an effective

cross-sectional area of 10 square meters, the latitude from the north pole is 0. 747

radians, the relative dielectric constant of the reflecting surface is 80, the conduc-

tivity is 4. 3 mhos per meter. The radius of the earth as calculated by the computer

from Equation (190) is 6,366,878.23 meters. This yields an effective radius of

8,488,958.70 meters. Horizontal polarization is assumed.

Utilizing the data and a typical antenna pattern, Figure B-1 is sketched from

values calculated by the computer logic previously listed. The computer traced out

the noted lobes of Figure B-i with A R2 equal to 2,000 meters and A Z2 equal to 2.5

meters. Z1 equals 4,572 meters. Figure B-1 shows the coverage of the second,

third, and fourth lobes obtained when a 4/3 earth was assumed. The first lobe is

omitted because it is very close to the surface of the earth. The two lobes which are

larger were obtained using a geometric earth. The value assumed for 7 is hence seen

to be very critical.

Table I and Table II list some of the major factors discussed in this paper

calculated at various points on the lobes obtained from a 4/3 earth consideration.
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Figure B-I

Pattern of coverage of a radar with typical properties stated on page B-i. Geo-
metrical and 4/3 earth coverage is noted.
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Table I

Typical intermediate parameters necessary for the calculation of a coverage

diagram.

SIK 2 F 14i RI x 103  R3 x 10 3  AR
R 2 x 10 Z2 Eq. (198) Eq. (121) Eq. (122) Eq. (193)

226 55.5 .347 218 9.79 1.23

246 85.5 .584 233 14.2 .907

266 135 .504 242 23.0 .855

286 225 .944 248 39.4 .962

310 390 .980 251 58.2 1.057

286 262 .958 244 39.1 1.22

266 182 .442 239 26.8 1.26

246 122 .643 229 16.0 1.21

226 87.5 .256 216 9.28 1.23

206 62.5 .769 198 5.36 1.34

216 84.0 .303 208 9.25 1.63

236 119 .355 222 15.4 1.59

256 174 .344 233 24.6 1.56

276 264 .858 239 38.4 1.64

296 389 .938 243 54.0 1.69

296 418 .951 241 53.1 1.88

276 298 .965 236 38.6 1.91

256 213 .506 228 26.3 2.02

236 153 .217 217 17.2 2.13

216 113 .324 204 10.7 2.19

206 104 .281 198 8.91 2.23

226 141 .285 212 14.5 2.21
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Table H

Typical intermediate parameters necessary for the calculation of a coverage

diagram.

tan aI, a 2  i'r x10 3

R x10 3  Z Eq. (117) Re(h) D )m x
2 2 Eq. (118) Eq. (135) Eq. (145) Eq. (135)

226 55.5 123 -. 999 .916 +.616

246 85.5 170 -. 999 .816 +.463

266 135 218 -. 999 .687 +.388

286 225 264 -.999 .574 +.297

310 390 299 -.999 .478 +.257

286 262 241 -.999 .579 +.318

266 182 196 -. 999 .685 +.391

246 122 157 -.999 .798 +.499

226 87.5 119 -. 999 .890 +.654

206 62.5 91.4 -.998 .947 +.855

216 84.0 101 -.998 .916 +. 759

236 119 132 -.999 .837 +.592

256 174 167 -.999 .735 +.470

276 264 199 -.999 .633 +.394

296 389 227 -.999 .550 +.,144

296 418 218 -.999 .554 +.359

276 298 187 -.999 .634 +-.412

256 213 156 -.999 .730 +.500

236 153 126 -.999 .825 +.621

216 113 98.4 -.998 .903 +784

206 104 86.6 -.998 .923 +1900

226 141 109 -.998 .861 4.711
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